
 10 Minutes of Code – Python UNIT 2: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 2: for loops with the TI-Innovator™ Hub Application: Computer Music

In this lesson you will generate random computer music.

Objectives:

 Use the for loop to control the number of notes

 Use the random number generator to create random

musical notes

In this unit you used for loops to control light, colors, and sounds. In this application, you will create a program to play

computer-generated random sound or music. This challenge can take three approaches: a) play purely random tones

(frequencies), b) play random notes using their special frequencies, or c) play random notes using their names (in a list).

You will also use random durations (timings) for each tone/note. And, for the icing on the cake, each note can create a

different color using the color LED.

Teacher Tip: If this is a class project, expect lots of different approaches.

The instruction to students results in random frequencies or tones. Notes have special

frequencies and names. See the end Teacher Tip for more ‘musical’ effects.

1. Make a new Python Hub Project (this one is named MUSICB) and

import color and sound from the [math] ti_hub… menu.

You will also need a function that can produce ‘random’ numbers. These

functions are part of the standard Python commands but are found in a

separate module that the Hub Project template does not import.

Press [math] random… and add the statement

 from random import *

 to your collection of import statements at the top of your code.

2. Write an input statement to enter the number of sounds to play (n).

Convert the value of n to an integer.

Use n in a for loop to play the random sounds.

 10 Minutes of Code – Python UNIT 2: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

3. Use the randint() function found in [math] random…

 r = randint(,)

The variable r is assigned a random integer from min to max for later

use. min and max will be replaced with numbers. But, before you enter

those numbers, consider the next step…

4. r represents a sound frequency. Not all frequencies are ‘audible’. Very

small frequencies and very large frequencies should be avoided

because they are outside our hearing range.

Recall that when working with music in the previous lesson you used

frequencies in the hundreds, so when choosing min and max keep that

in mind.

Add another random variable t (for time) and use the uniform() random

number generator also found on <math> random… . This returns a

random decimal number between min and max so some notes will play

for part of a second. Your choice of min and max here will depend on

how long you want each note to last.

Teacher Tip: the value of r could be uniform(,) also.

5. Next make the sound using sound.tone() and enter the variables

representing frequency and time, the variables r and t respectively.

Add the sleep() function to pause the program while the tone is playing.

For how long should the program wait?

Teacher Tip: sound.tone(r , t)

 sleep(t)

 10 Minutes of Code – Python UNIT 2: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

6. How about using the color LED? Remember that there are three color

channels, red, green, and blue, that are limited to the values 0 to 255.

You can have the LED light up in purely random colors using the

randint(,) function for each channel. For example:

 red = randint(0 , 255)
or you can make the colors depend on the frequency r or the time t or

both. But be careful about going ‘out of range’ beyond 255.

The screen to the right is not the complete program! You need to fill in

the proper elements in each function.

Teacher Tip: Possible solution for color:

Using % (mod) guarantees a value in the range 0…255 for the color channels.

 color.rgb(r*t%256,r*t%256,r*t%256)

which produces various brightness of a white light.

Challenge: How about random ‘notes’ for music rather than just tones?

a) Using frequency:

 n=randint(0,59)

 freq=55*2**(n/12)

 sound.tone(freq,time)

b) Using note names:

 Make a list of note names*: NoteList=[“c1”,”d1”,”e1”…]

 R=randint(0,len(NoteList)-1)

 sound.note(notelist[R], time)

Possible solution:

Hub Project

from ti_system import *

from time import *

import color

import sound

from random import *

n=input("number of notes?")

for i in range(n):

 r=randint(50, 1000)

 t=uniform(.2, 1)

 sound.tone(r,t)

 red=randint(0, 255)

 green=randint(0, 255)

 blue=randint(0, 255)

 color.rgb(red, green, blue)

 sleep(t)

 10 Minutes of Code – Python UNIT 2: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

* Creating a long list of note names is more easily done on a computer: if the program is

started on the calculator, use TI-Connect CE™ to transfer the program to the computer as

a .py file. Open the .py file in a Python editor or any text editor. Save the .py file and transfer

it back to the calculator using TI-Connect CE.

