

[image: TI Logo] 10 MOC: Python Modules 	 	TURTLE GRAPHICS: STARS AND FIREWORKS
 TI-84 PLUS CE PYTHON		
	Turtle Graphics
	Stars and Fireworks

	After learning about the basics of ‘Turtle Graphics’ in the previous lesson, let’s try to make a more complex display of stars and fireworks!

	1. Part 1: Drawing Stars
When making polygons using the turtle, you use the Geometric property that the sum of the exterior angles of a polygon is 360 degrees. When making a regular polygon the turning angle is therefore 360/n since all the angles are equal.

In the first part of this activity, you will use a similar property to produce star polygons like the one shown to the right.
	[image: Diagram

Description automatically generated]

	2. First let’s take a look at the basic regular polygon program from the previous activity. The program shown here makes a regular septagon.
	
[image: Text

Description automatically generated]

[bookmark: _GoBack][image:]

	3. Change the code to make a star…
In the turn function, instead of 360 use an integer multiple of 360.

To get this image we used 2*360.

Note: If you do not see the axes and the grid points, install the appvar GRID.8xv supplied with the TURTLE.8xv module onto your calculator.

	[image: Text

Description automatically generated]
[image: Scatter chart

Description automatically generated with medium confidence]

	4. You might try a higher multiple of 360 This star uses 3*360 instead of 2*360.
The multiple represents the number of revolutions that the turtle makes to complete the star. This is a (7/3) star polygon since it has seven vertices and takes the turtle three revolutions to complete.
	[image: Diagram

Description automatically generated]

	5. When you add polygon filling to a star polygon, the results can be surprising.
Add t.fillcolor(, ,), t.begin_fill() and t.end_fill() to your program in the appropriate places.

The entire star is not filled. There are places that the fill algorithm skips because it is looking for ‘borders’.
	[image: Text

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]

	6. Part 2: Fireworks!
In this section of the activity you will use lots of random values to generate these awesome fireworks on the screen.
	
[image: A screenshot of a map

Description automatically generated]

	7. In the star-making loop shown here, n is the number of vertices and r is the number of revolutions. What values for n and r make for pleasing stars?

 We will limit n to be random odd numbers: 5,7,9,11…
 For ‘pointy’ stars we will make r = int(n/2)

We will also use a random position, heading, color, and side length for each star in this project.
	[image: Text

Description automatically generated]

	8. First test these star-making options:
 n = 2 * randint(2, 10) + 1 # odd numbers
 r = int(n / 2) # or r = n // 2

Running this program will make a pointy star with an odd random number of vertices.
	[image: Text

Description automatically generated]

[image: A picture containing scatter chart

Description automatically generated]

	9. Now add code to the program to:
· Hide the turtle
· Hide the grid
· Make the turtle move fast: t.speed(0)
· Put the star-making code in a while not escape(): loop
· Assign a random odd value to n
· Calculate r
· Draw the star using the for loop
· Clear the screen to see the different stars. This is temporary.

Test your program several times to see various stars displayed like this one.
	
[image: Text

Description automatically generated]

[image: A picture containing shape

Description automatically generated]

	10. We’re ready for the fireworks:
· each star will be drawn in a different position on the screen using a different heading with different colors and sizes.
· assign random values to appropriately-named variables to achieve the fireworks effect as seen here.
· #comment the t.clear() statement since we want to fill the screen with stars.
· Runt the program and enjoy the show!
	[image: Polygon

Description automatically generated]

	
Teacher Tip: Odd numbers to avoid possible disconnected polygons. The number of revolutions gives the pointiest stars.

	
Teacher Tip: Possible solution:
from random import *
from turtle import *
t=Turtle()
t.hideturtle()
t.hidegrid()
t.speed(0)
while not escape():
 x, y, h = (randint(-159,159), randint(-106,106), randint(-90,90))
 t.penup()
 t.goto(x,y)
 t.setheading(h)
 t.pendown()

 r, g, b = (randint(0,255), randint(0,255), randint(0,255))
 t.fillcolor(r,g,b)
 t.begin_fill()

 n, r, s = (2*randint(2,5)+1, int(n/2), randint(10,100))
 for i in range(n):
 t.forward(s)
 t.left(r*360/n)
 t.end_fill()
 #t.clear()
t.done()

Note that the variable r is used for ‘red’ and for ‘revolutions’ but that’s OK because the fillcolor is established and then the varilable r can be reassigned.

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png
DITOR: STARG N
from turtle import X
urtle()

for 1 in range(n):
~foruard(100)
. 1ef £(360/n)
t.done()

Fre. Ta A #Tools] Run [Files

image4.png

image5.png
DITOR: STARG N
from turtle import X
urtle()

for 1 in range(n):
+.foruard(100)
. lef(24360/n)
t.done()

Fre. Ta A #Tools] Run [Files

image6.png

image7.png

image8.png
S N
from turtle import X
urtle()

“filleolor(255,0,255)

.| in_fill()

for i in range(n):
t.forward(100)
£i1ert(3x380/n)

t.end_fill()

t.done()

Fre. Ta A #Tools] Run [Files

image9.png

image10.png

image11.png
for i in range(n):
+.foruard(100)
toleft(rx3s0/n)

Fre. Ta A #]Tools

Run

Files

image12.png
L N
from turtle import X
from random import ¥

=Turtle()

srandint(2,10)+1

nt(n/2)

for i in range(n):
+.foruard(100)
tileft(re350/n)

Fre. Ta A #Tools] Run [Files

image13.png

image14.png
urtle()

tohideturtle()

t.hidegrid()

t.speed(0)

while not escape(

irandint (2,5)+1

nt(n/2)

for i in range(n):
. foruard(100)
. 1eft(ri350/n)

t.olear()

Fre. Ta A #]Tools] Run

Files

image15.png

image16.png
S b

image17.jpeg

