
 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

TI PlotLib Graphing Functions

The TI PlotLib module is also well-suited for graphing smooth, continuous functions: plotting points one-by-one requires

extra work to ‘connect the dots’ but using lists works as we did in the previous activity, Sequences, can work very well with

the right setup functions.

1. Begin a Python program using the ‘Plotting (x,y) & Text’

template from the ‘Type:’ dropdown list. Our program is called

PLTC.

2. This template provides the import statement:

 import ti_plotlib as plt

along with an incomplete demo program. The lists x and y do not

contain any data.

Since most of the code is already designed for plotting these lists,

let’s give it some data to plot.

3. Change the names of the two list variables to xs and ys. Make

room below these assignment statements for more code.

 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

4. Use four ‘window variables’ to establish a viewing window. We

will use these values in plt.window() rather than rely on the

plt.auto_window provided.

 x0, x1, y0, y1 = -10, 10, -7, 7

These values are close to a standard viewing window in the Graphs

app. The origin is near the center of the screen.

Having the four window variables assigned on a single line makes

them easier to locate and edit and saves vertical space in your

program.

5. It is useful have the Width and Height of the screen in pixels

stored in two Uppercase variables:

 W, H = 318, 212

 (For a capital letter press [alpha] twice, then the letter)

6. We will plot determine a value of the function for every pixel on

the screen, but we need to know the ‘distance’ between pixels

based on our chosen window settings:

 d = (x1 – x0) / W
d is the ‘change in x’ as we move from one pixel to the next in our

chosen viewing window.

7. We’re ready to generate the coordinate values using a loop. A for

loop is tempting, but the Python for loop can only process integer

values, not decimals.

Use a while loop instead. Start at x0 and have the loop end when x

reaches x1 by adding d to x in each step of the loop:

 x = x0
 while x <= x1:
 # some code goes here
 x += d

 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

8. In the loop body, evaluate your function and add the point

coordinates to the lists x and y.

We’ve chosen to plot the function

 y = x**2 - 5

 (You can also define a function and use it here!)

 xs.append(x)

 ys.append(y)

9. We’re done with the while loop that creates the lists. Turn your

attention to the plot functions below the loop. The most important

change is the names of the two lists: xs and ys . These are used

in both the auto_window(x, y) and the scatter(x, y) functions.

But… we will replace auto_window() with plt.window() and make

use of our custom window settings.

10. Make the changes highlighted here:

#comment plt.auto_window() statement ([2
nd

] [3] produces #)

Add plt.window(, , ,) selected from [math] ti_plotlib… Setup and

use your window variables x0, x1, y0, y1.

Change plt.scatter() to plt.plot(xs, ys, “.”) selected from

 [math] ti_plotlib… Draw. Note that the “mark” is the small dot.

11. <Run> your program after maing the changes. If your graph does

not appear and you see just the Shell prompt then there is an

error. But it’s probably not your fault! At the Shell prompt press

[2
nd

] [uparrow] several times to get the error message to

appear…

 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 4 education.ti.com

12. We got the MemoryError shown here. There’s not enough

memory for all the elements we are generating in the two lists

(318*2).

To fix the error we need to generate fewer elements in the lists.

Return to the <Editor> …

13. In the statement where d is calculated, change the calculation:

 d = 2 * (x1 - x0) / W
This forces the program to calculate a point at every other pixel thus

creating half as many data points in the plot.

After making the change… <Run> the program again

14. <Run> the program again and you should see the graph shown

here.

Challenge 1: plot two functions at the same time in different colors.

Be careful about memory usage.

 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 5 education.ti.com

15. Challenge 2:

Plot two functions in different colors. Be careful about memory

usage – you only need one x-list for both functions and change

the value of d to generate fewer points if you get the

MemoryError.

 10 MOC: Python Modules TI PLOTLIB: GRAPHING FUNCTIONS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 6 education.ti.com

Teacher Tip:

Sample solution to the Challenge; additions in bold:

import ti_plotlib as plt

from math import *

xs=[]; ys=[]; a=[] # a is a second y-list

x0,x1,y0,y1=-10,10,-7,7

W,H=318,212

d=3*(x1-x0)/W

x=x0

while x<=x1:

 y=x**3-2*x # first function

 xs.append(x)

 ys.append(y)

 y=2*cos(x) # second function

 a.append(y)

 x+=d

plt.cls()

#plt.auto_window(x,y)

plt.window(x0,x1,y0,y1)

plt.labels("X","Y",12,2)

plt.grid(1,1,"dot")

plt.axes("on")

plt.color(0,0,255) # blue

plt.plot(xs,ys,".") # first plot

plt.color(255,0,255) # magenta

plt.pen("medium","solid") # change pen thickness

plt.plot(xs,a,".") # second plot

plt.show_plot()

