
 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

TI plotLib Sequences

This activity demonstrates plotting mathematical sequences using the ti_plotLib module in two different ways: by plotting
individual points and by plotting lists.

0. Part 1: Begin a Python program using the ‘Plotting (x,y) & Text’
template from the ‘Type:’ dropdown list. Our program is called PLTB.

Let’s start by graphing both an arithmetic (linear) and a geometric
(exponential) sequence in one graph.

1. As explained in the Getting Started activity and worth repeating here,
this template provides the unique import statement:

 import ti_plotlib as plt
 along with a nearly complete set of programming functions.
This type of import statement requires that all ti_plotlib functions be
preceded by the alternate module name plt. This is called ‘aliasing’
the module (give it a different, shorter name). When selecting
ti_plotlib function from the menus, they will include this name at the
beginning of the function as seen here in the first three functions
provided.
Note: the statements are placed in a particular order. First set the
window, label the axes, draw the grid, draw the axes. The plot the
data.

2. We will not use the auto_window() function. Instead, use four
‘window variables’ to set the plt.window() because you might need
these values elsewhere in your code.

 x0, x1, y0, y1 = -5, 30, -5, 100
We’re placing the origin in the lower left corner of the screen because
we will be plotting points in the first quadrant.

Having the four window variables assigned on a single line makes
them easier to locate & edit and saves vertical space in your program.

The plt.grid((1, 1, “dotted”) values can be edited as needed.
Change the y-scale value from 1 to to 10. There are limitations on the
window and these grid values may interfere with the run of your
program.

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

3. Plot both an arithmetic and a geometric sequence in the same graph
to compare them. Use a for loop that makes use of the window
variable:

 for n in range(x1):
Note: change the loop variable from i to n.
In the loop body, first assign two variables the value of an
arithmetic/linear term like 3n and a geometric/exponential term like 2n

 a = 3*n # arithmetic
 b = 2**n # geometric

4. Plot each term using a different plot style (“mark”):

 plt.plot(n, a, "+")

 plt.plot(n, b, "o")

Get plt.plot(x, y, “mark”) from [math] ti_plotLib… > Draw

Note: There are two plt.plot() functions on the menu. One is for
plotting lists and the other is for plotting points.
The plot “mark” is chosen from a sub-menu and can be changed (by
hand) and is limited to “.”, “+”, “x”, or “o”.

5. <Run> the program and you should see the two plots. One is the
graph of points on a line and the other quickly disappears off the top
of the screen. Which is which?

6. Try changing the window settings to see different views of these

plots. Depending on your window values you may encounter the error
seen here: We changed xmax (x1) to 100 and got this ‘invalid grid
scale’ error because the grid lines would be too close together.
Either:

- change the plt.grid() x-scale value to a larger number (like
10) or

- #comment the plt.grid() function to hide the grid.

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

7. After fixing the grid issue, running the program now should produce a
graph like the one shown here. Notice how the geometric sequence
grows so quickly compared to the arithmetic sequence. How high is
each sequence at the right edge of the screen?

8. In the next section you will use most of this program to plot a different

sequence, make a copy of it: Select <Files>, point to this file and
select <Manage> Replicate Program… and provide a name for the
new program. We use PLTB2

9. Part 2: The Collatz Conjecture

The final sequence in this activity is based on the Collatz Conjecture
which is also discussed in the TI Codes Python materials.

The Collatz Conjecture goes like this:

0. Start with any counting number (we will use input()).
1. If it is even, then divide it by 2
2. Otherwise, multiply it by 3 and add 1
Repeat steps 2 and 3 with the new number.

The Conjecture (guess) is that all numbers eventually will become 1
but this has not been proven… yet.

Starting with the number 37, we get the sequence shown to the right
in the Python Shell. Let’s plot some Collatz sequences like this one.

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 4 education.ti.com

10. This program will differ greatly from the previous one as we will save
the plotting till the end using two lists.
Press [enter] a few times after the import statement to make room
for some new code to generate some data.

Write the first two statements shown:

 print("Collatz Conjecture")
 n = int(input("Number? "))
Remember that int() is on the <Fns…> Type
 and input() is on <Fns… > I/O

11. Initialize a counter variable c to be 0.

 c = 0
Create two lists:
 xs is the list of counters, starting with 0.
 ys is the list of terms in the Collatz sequence for n, starting with n.

 xs = [c]

 ys = [n]
We’re going to make a big assumption here: eventually the sequence
will reach 1. After all, it has never not happened, right?

 while n > 1:

12. Write the if… else structure that processes the Collatz algorithm:

while n>1:
 if n % 2 == 0: # % is ‘mod’
 n //= 2 # integer division
 else:
 n = 3 * n + 1

Note: use integer division (//) to ensure all values are integers and
there are no rounding issues.

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 5 education.ti.com

13. Still in the loop: increment the counter and add (append) the counter
c and the number n to their associated lists. Note the use of ‘addition’
here to append a list to another list:

 c += 1
 xs += [c] # same as xs.append(c)
 ys += [n]

Note that these statements are part of the while loop but not part of
the else: block and are indented accordingly.

14. When the while loop ends the sequence is complete so we’re ready
to plot the data.

Much of the code for plotting is already in the program but needs
some editing to suit our project.
We can use the plt.auto_window() function but use the arguments
(xs, ys) that we created above. #comment the other window
variables and function.

15. The next three statements control the labels, grid and axes.

 Plot the lists using either

 plt.plot(xs, ys, “o”) will plot the lists with
 segments connecting the dots.
or :

 plt.scatter(xs, ys, “o”) to plot just the points
 without the connections.

16. Run the program. At the input prompt enter a positive integer. The

plot displays the unique progression of the Collatz sequence of
numbers for your entered number and the xmax value on the screen
is a little more than the number of steps it took to reach 1. Your
starting value is the point on the y-axis (it was 37 for this image).

If your graph does not remain on the screen, use plt.show_plot()
after plotting.
Note: For some numbers (like 125) you might have a grid scale issue,
so just comment the .grid() statement or find a scale that works.

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 6 education.ti.com

17. To display the initial value on the graph use:
 plt.text_at(row, "text", "align")
found on [menu] TI PlotLib > Draw
row is a number from 1 to 13 that you enter.
“text” is your text (or a string variable) to display
“align” can be “left”, “center”, or “right” selected from a pop-up menu.

Since n is changed in the Collatz sequence generation, to display the
starting number for your sequence add a statement right after the
input statement that stores the value of n as a string:

 t = str(n)
str() is found on [menu] Built-Ins > Type and use that t variable in
the statement

 plt.text_at(3, t, “center”)

‘99’ at the top center of this screen is the result of the plt.text_at()
function.

18. Each starting value has a unique sequence. Some take quite a while

to reach 1. Can you find a number that does not reach 1? If so, you
will be famous!

Challenge: for each Natural number (up to an entered number) plot
the length (number of terms) of its Collatz sequence.

For many other interesting integer sequences see https://oeis.org/,
the Online Encyclopedia of Integer Sequences.

https://oeis.org/

 10 MOC: Python Modules TI_PLOTLIB: SEQUENCES
 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 7 education.ti.com

Teacher Tip:
Part 1 sample code:

import ti_plotlib as plt

x=[];y=[]

plt.cls()

x0,x1,y0,y1=-5,200,-5,100

plt.window(x0,x1,y0,y1)

plt.labels("X","Y",12,2)

plt.grid(10,10,"dot")

plt.axes("on")

for n in range(x1):

 a=3*n

 b=2**n

 plt.plot(n,a,"+")

 plt.plot(n,b,"o")

Part 2 sample code:

import ti_plotlib as plt

print("Collatz Conjecture")

n=int(input("number? "))

t=str(n)

c=0

xs=[c]

ys=[n]

while n>1:

 if n%2==0:

 n//=2

 else:

 n=3*n+1

 c+=1

 xs+=[c]

 ys+=[n]

plt.cls()

plt.auto_window(xs,ys)

plt.labels("X","Y",12,2)

plt.axes("on")

plt.text_at(3,t,"center")

plt.plot(xs,ys,"o")

plt.show_plot()

