[image: TI Logo] 10 MOC: Python Modules 	 	GETTING STARTED WITH TI_PLOTLIB: COIN TOSS
 TI-84 PLUS CE PYTHON		
	Getting Started with ti_plotLib
	Coin Toss

	This activity introduces the ti_plotLib module that is used for plotting points and graphing data sets (scatter plots).

	0. Included in the TI-84 Plus CE Python system, the ti_plotLib module contains statements and functions used for plotting data sets (pairs of lists), individual points, lines, and drawing text on a graph screen. This activity introduces the module through a coin-tossing (percent heads) simulation.
	[image:]

	1. The ti_plotlib Setup menu contains functions that prepare the graph screen:
cls() – clear the screen
grid() – set the grid scale values – style chosen from a sub-menu
window(), auto-window() – set the viewing window
axes() – style of axes (or off) mode chosen from a sub-menu
labels() – label the axes
title() – place a title at the top of the graph
show_plot() – pause while showing the plot. Press [clear] to exit
	
[image:]

	2. The ti_plotLib Draw menu (many have sub-menus):
color() – set the plot color
scatter() – a scatterplot of the lists with connecting segments
plot() – a scatterplot of either two lists (dots only) or plot a point
line() – draw a line between two points
lin_reg() – show a least squares regression line for the two lists
pen() – set the pen size and style for lines
text_at() – draw “text” at row number
	
[image:]

	3. Coin Tossing: When tossing a fair coin, approximately half of the tosses will be heads. If you toss the coin just a few times the likelihood that there will be an equal number of heads and tails is small. But, as the number of tosses grows, this ratio improves towards our expectation.

This activity creates an interactive simulation of coin tosses and displays a growing scatter plot of the percentage of the outcomes that are heads.
	
[image:]

	4. Begin a new Python program (we called it ‘PLTA’) and select the <Type> Plotting (x,y) & Text template from the dropdown list when naming the program. This template provides the unique import statement:
 import ti_plotlib as plt
along with an incomplete ‘demo’ program. The lists x and y do not contain any data. But all the plt. functons you will need are already in the code!

This type of import statement requires that all ti_plotlib functions be preceded by the alternate name plt. In Python-ese this is called ‘aliasing’ the module (give it a different, usually shorter name). When selecting ti_plotlib functions from the menus they will include this name at the beginning of the function as seen in the statements shown here.
Note: the Setup statements, if used, should be listed in this order since each one paints the canvas (screen) over the previous one: clear the screen, set the window, draw the grid, then draw the axes.
	
[image:]

	5. The main program consists of a loop that ends when [clear] is pressed. Usually this is done with the statement: while not escape():
but this program needs to also pause until a key is pressed to toss more coins when you are ready. Near the top of the program, below the two list assignments, assign the variable k the result of wait_key():
 k = wait_key()
and write the while loop that ends when k equals 9 by writing:
 while k != 9:
because the wait_key() function returns the value 9 when the [clear] key is pressed.

Indent all the plt. statements except the last one to become part of the loop body.

Add from random import * at the top of your program since we’ll be ‘tossing a coin’ using the randint() function. (not shown)
	
[image:]

	6. The plot will show the toss number along the x-axis and the percentage of heads tossed (as a decimal) on the y-axis. The percentage will be a number between 0 and 1.

Initialize two counting variables:
 t = h = 0
before the while loop.
 t counts the number of tosses
 h counts the number of heads
	
[image:]

	7. In the while loop body, turn your attention to coin tossing and recording data. At each keypress, toss the coin 10 times using a for loop:
 for i in range(10):
 t += 1 # count the toss
 x += [t] # append the count to the list x
 h += randint(0,1) # toss coin and add 1 if head
 y += [h / t] # append the ratio to the list y
Note: x += [t] (shorthand for x = x + [t]) is the same as x.append(t).
Find the square brackets on [2nd] [stat] or on <a A #>

	
[image:]

	8. It’s time to address the plot functions:
 #comment the functions .auto_window(), .labels(), and .grid().
 press [2nd] [3] for the #comment symbol (#)
 Add a custom window setting:
 plt.window(0, t, 0, 1)
 that changes the window to suit the number of tosses t
 Find plt.window(, , ,) on [math] ti_plotlib… Setup

Note that all the plt. functions are still part of the while loop (indented_ except for the last one, plt.show_plot(), which simply pauses the program until the [clear] key is pressed.
The last statement in the while loop is the wait_key() function to pause and wait for another keypress:
 k = wait_key()
	
[image:]

	9. <Run> the program and press a key. You will see the first 10 dots on the graph. Each represents the percentage of the number of heads after each toss. The x-axis ranges from 0 to 10 and the y-axis ranges from 0 to 1.
	
[image:]

	10. Press a key several more times. The while loop adds 10 tosses for each keypress and updates the plot to show more tosses. The number in the lower right corner (150 in this image) is the total number of tosses thus far.

Notice the pattern in the plot: The dots added on the right get closer to the vertical center of the screen which represents the value y=0.5. This is what you expect from tossing a coin a large number of times: the number of heads is approximately 50% (0.5 or ½) of the tosses.

To end the program, press the [clear] key twice: once to end the while loop and once to end the plt.show_plot() function at the bottom of the program.
	
[image:]

	11. If you continue to press a key to toss more coins, eventually you will encounter the MemoryError indicated here. The Python App runs out of memory because the lists get too large.

Challenge:
You can overcome the memory limit either by:
a) Plot fewer data points (say, every 10 tosses instead of every one). You will still run out of memory but at a larger (10x) total.
b) Only plot the last 100 data points. You won’t run out of memory. But you will have to adjust the viewing window so that the plot still fills the screen.

	
[image:]

[bookmark: _GoBack]

	

Teacher Tip: Sample code
Plotting (x,y) & Text
import ti_plotlib as plt
from ti_system import *
from random import *

x=[];y=[]
t=h=0
k=wait_key()
while k!=9:
 for i in range(10):
 t+=1
 x+=[t]
 h+=randint(0,1)
 y+=[h/t]

 plt.cls()
 #plt.auto_window(x,y)
 plt.window(0,t,0,1)
 #plt.labels("X","Y",12,2)
 #plt.grid(1,1,"dot")
 plt.axes("on")
 plt.color(0,0,255)
 plt.scatter(x,y,"o")
 k=wait_key()
 plt.show_plot()

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png
30

image3.png
DIuErTez] N
Draw Properties

mport ti_plotlib as plt

15() 1

rid(xscl,yscl,"

indou(xnin, xnax, ynin, ynax)

wto_window(xlist,ylist)

Jylabel®, %,y)

itle(Mtitle")
9ishow_plot() displays[clear]

Too

image4.png
DITIELTeN N
up L] Properties
olor(r,g,b) 0-255
T=() clear screen
how plot() display»[clear]
catler (xlist,ylist, mark") »
Lot(xlist,ylist, "nark") »
Lot (s, y, "nark") "y
ine(xi,y1,52,y2, "node") »
in_reg(xlist,ylist,"disp") »

image5.png

image6.png
L N
i Plotting (x,y) & Text
import ti_plotlib as plt

)
12,2)

wuﬁm:r[m,m,zs
bt scatter(xy, "o")
plt.shou_plot()

Fre. Ta A #]Tools] Run [Files

image7.png
plticolor(
pli.scatter(x.y,"o")
pLt.shou_plot()

Fre. Ta A #]Tools] Run [Files

image8.png
inport ti_plotlib as plt
from ti_systen import %
from random import ¥

Iiv=l1

Sitoisl
Frs. Ta A #Tools] Run [Files

image9.png
uhile ki

for 1 in range(10):
i

Run

Files

image10.png
plt.cls()

Hiplt. suto_windou(x,y)

plt.uindou(0,t,0,1)

Hiplt. Labels("x', "Y1, 12,2)

Hiplt.grid(1,1, "dot")

plt.axes("on!

plt.color(0,0,255)

pliiscatter(x,y,"o")

k=wait_key()
pLt.shou plot()

Fre. Ta A #]Tools] Run [Files

image11.png
10

image12.png

image13.png
Traceback (most recent call last

File "<stdin>", line 1, in <no
dule>

File "PLTA.py", line 15, in <n
odule>
MemoryError: memory allocation f
ailed, allocating 1432 bytes
55>

Fre. Ta A #]Tools Editor]Files

image14.jpeg

