[image: TI Logo] 10 MOC: Python Modules 	 	TI_DRAW: INTERACTIVE ART
 TI-84 PLUS CE PYTHON		
	ti_draw
	Interactive Art

	The most versatile tool in the TI-84 Plus CE Python library is the wait_key() function. In this activity you will make use of this function to make an interactive ‘Etch-A-Sketch’® style drawing program.

	0. Using the wait_key() function found in the ti_system module it is possible to make dynamic, interactive graphical applications (and games!). In this activity you will build a simple drawing program that begins by using the four arrow keys and can be extended to make use of other keys for changing color, point style, making ‘stamps’ and other features.
	
[image:]

	1. Begin a new program and add
 from ti_draw import *
found in <Fns…> Modul <Add-Ons>
Also import the ti_system module to use the wait_key() function.

The first statement sets up a comfortable canvas coordinate system with (0,0) in the lower left corner and each pixel representing one unit:
 set_window(0, 317, 0, 211)
	
[image:]

	2. Start in the center of the screen. Assign 159 to the variable x and 105 to the variable y. This can be done in a single line:
 x, y = 159, 105

We usually use the statement while not escape(): to end a program, but in this project we need to test the value of wait_key() to see which key is pressed then act accordingly, so we will assign wait_key() to a variable named k. First assign 0 to the variable k:
 k = 0
Before the while loop, use the clear() function found on [math] ti_draw… Control to clear the screen:
 clear()
Then write the while loop that terminates when k is 9.
 while k != 9:
 9 is the value that wait_key() returns when pressing the [clear] key.
	
[image:]

	3. In the loop body, plot the point (x, y) using the ti_draw function
 plot_xy(x, y, 1)
Note: he third argument is the point ‘style’ which can be a value from 1 to 13. You can try other styles.
Now assign the variable k the result of the wait_key() function:
 k = wait_key()

wait_key() returns a unique number for each key on the keypad.
	
[image:]

	4. You can <Run> the program now to see a dot in the center of the screen, but it does not move yet.

Press [clear] to end the program then return to the <Editor>.
	
[image:]

	5. Check the value of k and cause the point to be repositioned at a new location depending on the key pressed. The four arrow keys on the keypad are numbered 1: “right”, 2: “left”, 3: “up”, and 4: “down” and each one will impact either the variable x or the variable y.

The first of four if statements is:
 if k == 1:
 x += 5
 If the ‘rightarrow’ key is pressed add 5 to the value of x.
You could also write x = x + 5 (or some other number).
Write the other three if statements now.
	
[image:]

	6. Did you write these three?
 if k == 2:
 x -= 5
 if k == 3:
 y += 5
 if k == 4:
 y -= 5
	
[image:]

	7. Test your program now. When you see the dot, use the four arrow keys to draw.

Again, press [clear] to end the program.
	
[image:]

	8. Side note: Almost all keys on the keypad return a value like the arrow keys. All values are numbers. To determine these numbers, you could write this short program:

[2nd] and [alpha] do not give values because they are modifier keys that change the behaviors of some of the other keys. Make notes about which keys produce which values.
	
[image:]

	9. You can use other keys to add features to your program. Many other features are possible. Just add an if statement to your program to incorporate the feature. Some possibilities:
· use three other keys and the set_color(, ,) function to change the drawing color to red, green, or blue.
· Use another key to clear() the screen (but not the [clear] key – that’s already taken)
· Use another key to switch to erase mode (set the color to white, the background color). But you will need some other key to return to black
· Add a key to make a stamp (“s”?). The stamp can be something like a polygon or a circle.
· Change the increment (we originally used 5 in this activity) values in your code to make the point move more or less for each keypress as seen here where 1 was used to make it look like solid lines.

	
[image:]

	10. Your drawing point might go off the screen (see the green section of this path). How should you handle that? There are two common options:
· Stop at the edge of the screen (like a wall)
· Wrap around to the opposite side of the screen (called ‘toral’ mode).
(an increment of 10 and point style 12 was used for this image)
	
[image:]

“Etch-A-Sketch” is a registered trademark of SPIN MASTER LTD.

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png
A drauing program

from ti_draw inport
from ti_systen inport x

set_window(0,317,0,211)

Fre. Ta A #Tools] Run [Files

image4.png
A drauing program

from ti_draw inport
from ti_systen inport x

set_window(0,317,0,211)
«,y=159,105

clear()
ekt

Fre. Ta A #Tools] Run [Files

image5.png
set_window(0,317,0,211)
«,y=159,105

clear()
vhile k

plot.xy(x,y,1)
k=wait_key()

Fre. Ta A #Tools] Run [Files

image6.png

image7.png
T N
=159, 105

oLear()
uhile k

plot xy(x.y,1)
k=wait_key ()

Fre. Ta A #Tools] Run [Files

image8.png
plot xy(x,v,1)
fewaitokey()
if k

Run

Files

image9.png

image10.png
from ti_systen import ¥

while Tru
a=vait_key()
print(a)

Freo Ta A #]Tools] Run

Files

image11.png

image12.png

image13.jpeg

