

[image: TI Logo] 10 MOC: Python Modules 	 	TI_DRAW: ANIMATION
 TI-84 PLUS CE PYTHON		
	Ti_draw
	Animation

	After completing the ‘Getting Started…’ activity let’s make an object move on the screen. Animation is big business and computers have changed the landscape.

	0. This project produces a ‘bouncing ball’ animation on the graphics ‘canvas’.

	
[image:]

	1. Begin with this short program that causes a point to move across the screen.
The point starts at the middle of the left edge of the screen: (0, 106).
plot_xy(, ,) is found in the ti_draw… module and simply plots the point (x, y).
In plot_xy(x, y, 1) the 1 represents the point style which can be a value from 1 to 13. Try the other styles.
The if statement at the end causes the point to ‘wrap around’ on the screen. Your first modification will cause the point to move back and forth between the sides of the screen.

	
[image:]

	2. Introduce another variable, dx = 10, and use it to make the point move to the right in place of the constant 10 used in the previous step.
	
[image:]

	3. Change the if statement to reverse direction by changing the value of dx.
 if x > 318 : dx = -dx

Add another bit of code to cause the point to change direction at the left side of the screen, too. Try it yourself first.
	
[image:]

	4. Did you add an or… clause to the condition?
 if x > 318 or x<0: dx = -dx

Test the program now to see that the point moves right and left on the screen until you press [clear].
	
[image:]

	5. Modify the program to introduce vertical motion as well, but this time instead of moving at a fixed rate, make the point accelerate like a falling object: seemingly under the effect of gravity!

Introduce two new variables: dy = 0 for the change in the y-position
 and g = 2 to represent ‘gravity’.
The value of g is arbitrary and can be edited later to see the effect.
	
[image:]

	6. When x changes value by adding dx, so do y and dy:
 dy increases by the amount g and
 y increases by the amount dy.

Note: (x, y) is position. dx and dy represent velocity (changes in position). g represents acceleration (change in velocity).
	
[image:]

	7. When the point reaches the bottom of the screen (200 is close to the bottom), make the point ‘bounce’ upward using dy = -dy + g (change direction). The extra +g here is to decrease the energy in the bouncing ball. Without it the ball will return to its original height and that is unrealistic.

We also make the point slow down (lose energy) horizontally:
 dx *= 0.9.
Eventually the point will stop moving.

	
[image:]

	8. Change the starting position of the point from (0, 106) to (0,10) to give the point more vertical room to fall.

<Run> the program and experiment with the numbers used in the code to see the effect of each variable.

Change the plot_xy(x, y, style) and color (use set_color(, ,)) of the point.
	
[image:]
[image:]

	9. Move the clear() function before the while not escape() statement so that each position of the point remains on the screen, thus showing the complete path of the point. This is point style 3. What patterns do you see in this path?

Challenge: connect the dots!
	
[image:]

[bookmark: _GoBack]©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.jpeg

