
 10 Minutes of Code: Python Modules                              MICRO:BIT : PAIR-O-DICE  

             TI-84 PLUS CE  PYTHON        

©2021 Texas Instruments Incorporated 1 education.ti.com 

micro:bit  Pair-O-Dice       

1. This activity is a compilation of the micro:bit skills you learned in the 

previous activities: write a program that uses a button to collect some 

data and display the data on the micro:bit, show a growing dot plot of the 

collected data and then store the lists as TI-84 Plus CE lists for further 

study and analysis.  

 

 

 

2. The micro:bit can act as a 2-dice roller and display two values 

(sequentially). The calculator can display a growing dot plot of the sums 

recorded at the same time. Write a program that conducts the dice 

tossing experiment and collects the data. At the end of the program 

store the data into CE lists for further study and analysis on the 

calculator. Let’s get started…  

 

 

 

3. Start a new program called DICEPAIR. 

 

You will need a whole bunch of Python tools for this program so there 

are quite a few imports that will take place.  

 ti_system  for escape( ) 

 random  for randint( , ) 

 ti_plotlib  for the Python graphics 

 microbit  for the micro:bit 

 mb_disp  for the micro:bit display 

 mb_butns  for the micro:bit buttons  

 

. 

Tip: as you develop a program from scratch you will find that you need 

more import statements than you originally thought. It’s fine to go back 

and add them as needed. 

 

 

 

 

 



 10 Minutes of Code: Python Modules                              MICRO:BIT : PAIR-O-DICE  

             TI-84 PLUS CE  PYTHON        

©2021 Texas Instruments Incorporated 2 education.ti.com 

4. Use button A to toss the dice and button B to ‘reset’ the data collection 

and start over. It will be convenient then to have a ‘setup’ subroutine that 

can be used in different parts of the program to set up the plot screen in 

the calculator. 

Start your code with a def setup( ): function. 

 

 

5. This function performs the setup commands for plotting as indicated by 

the.plt prefix. Find these commands on [math]  ti_plotlib. 

 

All these statements are indented to form the function body. 

Remember that the order of these setup commands is important and 

they should be used in the order that they appear on the menu. 

The color statement is on the Draw menu. We chose black axes and 

purple dots. 

 

You may add more statements to this function later. 

 

 

 

 

 

6. Begin the main program using a #comment as an indicator. 

Create two lists:  

        ttls=[0,1,2,3,4,5,6,7,8,10,11,12] 
        sums=[0]*13 
 

ttls[0] and ttls[1] are not possible sums but act as ‘placeholders’ so that 

the indexes match the element contents. When the sum of the dice is 2 

we will increment element sums[2]. 

 

Note:To produce a scatter plot we need two lists. ttls is the first list and 

sums is the second list. 

 

Now ‘call’ the setup( ) function you defined above to prepare the 

calculator screen for plotting. 

 

 

 

  



 10 Minutes of Code: Python Modules                              MICRO:BIT : PAIR-O-DICE  

             TI-84 PLUS CE  PYTHON        

©2021 Texas Instruments Incorporated 3 education.ti.com 

7. Begin with the usual… 

              while not escape(): 
                     if button_a.is_pressed():   

 

Why did we choose .is_ instead of .was_ ? Think about the difference, 

or just wait and see… 

 

Remember, pressing button A  

 tosses the dice 

 displays them on the micro:bit   

 calculates the total  

 increments (adds 1 to) the proper element of sums  

 produces a scatter plot.  

Try writing the code for button A now. 

 

 

 

8. Here is most of the code for button A. One feature is missing: displaying 

the two dice on the micro:bit. That is left as a project for you. 

 

Hint: The command 

       display.show(<variable>, delay=400, wait=True) 

displays the value of the <variable> on the micro:bit. You will need to 

display two values (each die). Good luck! 

 

The statement plt.scatter(…) creates a scatterplot on the calculator 

screen. 

 

 

 

9. You can test your program as written so far (even without the display. 

statements). It should show a scatter plot on the calculator screen as 

you hold down button A (fast). That’s why we chose .is_.  

 

If we used .was_ then we would have to click and release button A to 

make each toss. 

 

But wait… there’s more! 

Press [clear] to end the program. 

 

 

 

 

 



 10 Minutes of Code: Python Modules                              MICRO:BIT : PAIR-O-DICE  

             TI-84 PLUS CE  PYTHON        

©2021 Texas Instruments Incorporated 4 education.ti.com 

10. There are two more tasks: 

(in addition to making the micro:bit display the values of the dice under 

button A) 

 Button B should act as a ‘reset’ button: clearing the screen by 

calling setup( )  and set the sums list to all 0’s again. That’s 

only two statements in the if button_b… block as shown.  

          Note the use of the setup() function again. 

 The final two lists should be exported to the CE for further study. 

You need two  store_list( , ) statements (incomplete as shown), 

one for each list in the program. 

Pay attention to the indentation. 

Note: we used .was_ instead of .is_ for button B. Can you feel the 

difference? 

 

 

11. After you have stored the two lists by pressing [clear] to end the loop 

and the program, quit the Python app ([2
nd

 ] [quit]) and set up a scatter 

plot of TTLS, SUMS - the CE lists are all CAPS - as shown in this image.  

 

 

 

 

 

 

 
 

 

 

12. What mathematical model best approximates this (long range) data? 

Hint: It is NOT a regression! 

 

  


