[image: TI Logo] 10 Minutes of Code: Python Modules	 MICRO:BIT : THE LIGHT SENSOR
 TI-84 PLUS CE PYTHON	 	
	micro:bit
	The Light Sensor

	In this lesson, you will monitor the light sensor on the micro:bit, collect the data in a python list and store the data in a TI-84 Plus CE list for further analysis using the calculator.

	1. The micro:bit can read the ambient light level using the display LEDs. Yes, the display LEDs can also be used as an input device!

For more information on the micro:bit light level see:
 Sensing changes in light on the micro:bit : Help & Support
	
[image:]

	2. In a new program (LITE) add the usual imports and the while loop.

This is a good place to use the MBSTART template file suggested in an earlier activity.
	
[image:]

	3. Add another import statement at the top to access the micro:bit display menu:
 from mb_disp import *

In the while loop body, write the assignment statement:
 b = display.read_light_level()
Type the variable b and then get = .read_light_level() from [math] Display…

Add a print statement to see what the function produces:
 print(“b = “, b)

Remember that these last two statements are indented so that they are both in the while loop body.
	
[image:]

	4. <Run> the program and point the display side of the micro:bit at a light source. It does not matter what is showing on the display. Move the micro:bit toward and away from the light and observe the changing values on the TI-84 screen. You should see values varying between 0 and 255.
Note: if you do not see changing values as in this image, add a sleep(100) statement to the loop to slow things down.
As you probably expect, the further from the light source, the lower the light level value. Now you will add code to the program to collect the light level data. Then, using the calculator, you can create a scatter plot of light vs. time.
Press [clear] to end the program and then go back to the <Editor>.
	
[image:]

	5.
Create two empty lists before your while loop:
 times = []
 brites = []
Find the square brackets on the keypad, on <a A #>, on <Fns…> List or on [list]. You can use shorter variable names to save on typing (like ts and bs).

Also before the while loop, add a statement to start a ‘time’ counter variable (t) at 0:
 t = 0

Avoid using the word ‘time’ as a variable because there is a time module. It is a good practice to pluralize list names because they contain many values.
	
[image:]

	6. In the loop body, after the print statement, add a statement to increase the timer variable t. We will use a one second time interval between light readings, so use:
 t = t + 1

Note: in Python you can also write this statement as: t+=1
	
[image:]

	7. Add the values of t and b to their respective lists using the statements:
 times.append(t)
 brites.append(b)

.append() is found on <Fns…> List and is pasted after typing the variable name.

These statements add the current b (brightness) value and t (time) value to the end of the lists.

	
[image:]

	8. To control the timing of the sampling, add:
 sleep(1000)
after the two .append statements. This pauses data collection for one second between each sample.

sleep() is included in the microbit module and is modified to use milliseconds.

	
[image:]

	9. After the while loop ends, store the two Python lists into TI-84 Plus CE lists using store_list() found on [math] ti_system….
The TI-84 list names (the arguments in “QUOTES”) must be 5 UPPERcase letters or less. We use BRITS and TIMES for those lists. The second argument of store_list(,) is the Python list variable to store.

You can also use “1” for the built-n list L1 and “2” for list L2.
	
[image:]

	10. <Run> the program. Start with the micro:bit close to your light source. An exposed light bulb or a smartphone flashlight work well. Slowly but steadily move the micro:bit away from the light at a constant rate until the brightness reading is less than 10.

Press [clear] to end the program.

Repeat the process until you feel that you may have ‘good’ data. Displaying the data on the calculator screen using print() or disp_at() may be helpful.
The sample data in this image of the TI-84 Plus CE Stat Editor shows some collected data in the lists TIMES and BRITS.

	
[image:]

	11. Quit the Python App and set up and view a scatter plot of the data (TIMES, BRITS).
Then use your calculator to find a function that ‘best’ fits your data. What physics principle is controlling the data?
	

©2021 Texas Instruments Incorporated	2	education.ti.com
image1.png
I B |

It d 04

LI I |

image2.png
from ti_systen import &
from microbit import %

uhile not escape():

Fre. Ta A #Tools] Run [Files

image3.png
from ti_systen import &
from microbit import ¥
from mb_disp inport X

uhile not escape(
b=display.read_light_level()
print("b=""b

Fre. Ta A #Tools] Run [Files

image4.png
Frs Ta A #]Tools Editor]Files

image5.png
from ti_systen import &
from microbit import ¥
from mb_disp inport X
tines=[]

brites=[]

uhile not escape():
b=display.read_light_level()
print("b= ",b)

Fre. Ta A #Tools] Run [Files

image6.png
from ti_systen import &
from microbit import ¥
from mb_disp inport X
tines=[]

brites=[]

uhile not escape():
b=display.read_light_level()
print("b="",b)
et

Fre. Ta A #Tools] Run [Files

image7.png
L N
from mb_disp import

tines=[]

brites=[]

uhile not escape(
b diiphy-ru:T,liiM,lwll(l

Run [Files

image8.png
from mb_disp import

2 Liont_tever()
b)

append(t)
brites.append(b)
sleep(1000)_

Fre. Ta A #]Tools] Run [Files

image9.png
uhile not escape():
ad_light_level()

store_list("TINES", times)
Fre. Ta A #Tools] Run [Files

image10.png
[TIMES [sraTs

[geevenseny]

L=

image11.png
R 0ff

Tpe: I LA b e s L
Xlist:TIMES
V1ist:BRITS

image12.png

image13.png
R 0ff

Tpe: I LA b e s L
Xlist:TIMES
V1ist:BRITS

image14.png

image13.jpeg

