[image: image10.jpg]

 10 Minutes of Code

Unit 4: Skill Builder 1
 TI-Nspire™ Technology

student activity

	Unit 4: Loops
	Skill Builder 1: For Loops

	In this lesson, you will learn about the loop concept in programming and examine the For…EndFor loop
	Objectives:

	
	· Describe the concept of looping in programming
· Write programs and functions using the For…EndFor structure
· Control the amount of output space (scrolling) taken using DispAt
· Using getKey(1) as a ‘pause’ command

	
	

	About Loops
The TI-Basic programming language has the ability to process a set of statements over and over. This repetition of statements is called looping.

The three loop structures you will learn in this Unit are each accessed by selecting menu > Control from the Program Editor menu. (See For, While, and Loop to the right.)

The While… and Loop… structures will be explored in later lessons in this Unit. For more information about additional Control structures in this menu, see the Reference Guide at the TI Codes website.
	[image: image1.jpg]: Actions

VA 2: Check Syntax| !

: Define Variabls
@ 5: Transfers
Y% 6:1/0
124 7: Mode

9: CIrEn
A:PassErr

rap £111 B

	For…EndFor
The For…EndFor loop is used to process an arithmetic sequence of values. This process is known as ‘iteration.’
Selecting the For…EndFor statement from the control menu gives you the necessary components for building the rest of the structure:
For , ,
EndFor

	[image: image2.emf]

	The commas after the word For indicate that you need to provide at least three components. An additional comma and a fourth component can be added for the increment value. (Note: If the increment value is 1, the fourth component can be omitted.)
Here’s an example:
For i, 1, n, 1
Disp i, i2
EndFor

· i is the loop control variable: The first item must be a variable.
· 1 is the starting value: Each time the loop is processed it will take on values, or count, from the specified start value (1).
· n is the ending value: Each time the loop is processed it will take on values, or count, to the specified end value (n).

· 1 is the increment value: Each time the loop is processed it will take on values, or count, from the start to the end value by the specified increment value (1).
You can also read the For statement as: “For i going from 1 to n by 1s”

Any or all of the last three components can be numbers, variables, or expressions.
	[image: image3.png]rao 171 9]
*Toops y
[Define loops{r)=
Prem

local £

Fori, 1, 1

2

Disp i, i
EndFor|
EndPrem

	Write the Program

Enter the code into a program using an argument (n), and run it.

	[image: image4.png]rao 171 9]
*Toops y
[Define loops{r)=
Prem

local £

Fori, 1, 1

2

Disp i, i
EndFor|
EndPrem

	Running the Program
Running the program produces the results shown to the right (in a split screen to see the code and the result).
· The value for n (5) is an argument to the program.

· The loop control variable is a Local variable; it does not affect the rest of the problem.
· The loop begins with i=1 and Displays the values of i and i2.

· After the Disp statement, the EndFor statement passes control back to the For statement where the increment (1) is added to i.
· If the resulting value is less than or equal to the end value, the loop is processed again with the new value for i.

· This process is repeated until the end value is surpassed.

After the loop ends, i will be larger than the end value. Add another Disp i statement after the EndFor statement to see for yourself.
	[image: image5.png]lo0ps” Stored sUccesst| foops(5

Define loops{r)=

Prgm

Local i

Foriln1
Dispi,i2

EndFor

EndPrgm

	Large Output and DispAt

When you use a ‘large’ argument in this program, such as loops(10) or loops(100), the output is a long list and is challenging to inspect by scrolling.

You can use DispAt 1, i, i2 to place all output information on the same line of the screen. Try it.
DispAt is located in menu > I/O.
	[image: image6.png]*loops

*Doc <~ RAD

Define loops(n)= -

Prgm

Fori,1,m,1
DispAt 1,1, 12

EndFor

EndPrgm

	The output is displayed too fast to observe each pair of values. There are two ways to fix this problem.
One Fix for DispAt

There are two ways to control the speed of the output. The first is:
Wait <seconds>
Wait is located in menu > Control. (Since Wait is the last option, use the up arrow.)
Adding Wait 3 after DispAt tells the program to wait or pause for three seconds after each new set of values is displayed.
	[image: image7.png]*loops

*Doc < RAD

Define loops(n)= -

Prgm

Fori,1,m,1
DispAt 1,1, 12
Wait 3

EndFor

EndPrgm

	Another Fix for DispAt

The second method for controlling the speed of the output is:
getKey(1)
getKey() is located in menu > I/O.
Adding getKey(1) (you have to type the number 1) after DispAt pauses the program until a key is pressed.

Consider using a message such as DispAt 2, “Press any key to continue” before the getKey(1) function. This gives the user greater control than Wait.
	[image: image8.png]*loops

*Doc < RAD

Define loops(n)= -

Prgm

Fori,1,m,1
DispAt 1,1, 12
getKey(l)

EndFor

EndPrgm

[image: image9.jpg]

©2018 Texas Instruments Incorporated
3
education.ti.com

[image: image10.jpg]