

10 Minutes of Code UNIT 1: SKILL BUILDER 3

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 1 education.ti.com

Unit 1: Program Basics Skill Builder 3: Programs and Functions

In this third lesson for Unit 1, you will learn the basic

difference between a program and a function.

Objectives:

 Write a program and a function that appear to do

the same thing

 Explore the differences between a program and a

function

Teacher Tip: This lesson explains the difference between a TI-Nspire™ CX program and

user-defined function. This distinction is not unique to the TI-Nspire. In fact, some

programming languages rely solely on functions.

The use of local and global variables is discussed in Unit 2.

While a function can use Disp statements, this limits the usefulness of the function. For

example, it cannot be used for graphing. The use of Return in a function allows a function

value to be used by other operations.

What is a function?

The purpose of a function is to represent, or return a value. In the image to the right,

the program hypotenuse and the function hypot perform the same task. Note the

change from Disp in the program to Return in the function. The function ‘represents’ a

value which can be used by other operations, even graphing.

Creating a Function

1. In a Calculator app, select menu > Functions & Programs > Program Editor >

New….

2. Enter hypot for the name, and change the Type to Function. Select OK or press

enter to create the new program.

You will see a split page with the Calculator app on the left and the Function Editor on

the right. This makes it easy to edit and test the function on the same page.

3. Add the arguments a,b inside the parentheses. Inside the function, add the

Return statement by selecting menu > Transfers > Return. Complete the

statement by adding the square root of a
2
+b

2
.

Return √(a
2
 + b

2
)

4. ‘Check Syntax & Store’ the program by selecting menu > Check Syntax & Store

> Check Syntax & Store (or use the shortcut ctrl+B).

5. In the Calculator app, test the function. Use the example hypot(3,4). Also try

some expressions using this function such as:

2*hypot(5,12) hypot(4,5) + hypot(6,7) (hypot(7,24))^2

10 Minutes of Code UNIT 1: SKILL BUILDER 3

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 2 education.ti.com

Functions are similar to programs but are not the same. Functions can have many statements and look like other

programs in the Program Editor. Functions are different from programs because their purpose is to return a value. The

value can be a number, list, string, matrix, or any other built-in data type. Programs are limited in scope (where they can

be used). Functions are more versatile because they can be used anywhere a built-in function is used. Programs can only

be run (executed) from a Calculator app or inside a Math Box in a Notes app. Functions represent a value that can be

used as part of a larger expression.

On a TI-Nspire CX CAS, a function will return an algebraic expression when undefined

variables are used as arguments. It could also return a symbolic expression such as

√(13) for hypot(2,3).

On a non-CAS TI-Nspire CX, the use of undefined variables produces an error

message. For a symbolic expression such as √(13), the function returns an

approximate numeric value.

Graphing the hypot(x,b) Function

User-defined functions have the advantage of being available just like any built-in

function.

After you’ve written and stored the hypot(a,b) function above, add a Graphs app,

enter f1(x)=hypot(x,3), and press enter.

What shape is this function?

Teacher Tip: What shape is the function? Hyperbola

Functions have special limitations. Since their sole purpose is to return a value, they are not

allowed to impact variables that are not local to the function.

Programs can and do affect other variables and care should be taken when using variables

in a program. Arguments (or parameters) are special because they are only used by the

program and are not created in the current problem.

The use of local and global variables is discussed in Unit 2.

