[image: TI Logo] 10 Minutes of Code 	 	UNIT 7: APPLICATION
TI-NSPIRE CX™ WITH TI-INNOVATOR™ AND TI-RGB ARRAY™ 	STUDENT ACTIVITY
	Unit 7: The RGB Array
	Application: Smart Lights

	In this final lesson, you will develop a program that uses the BRIGHTNESS sensor on the TI-Innovator to control the number of LEDs lit up on the TI-RGB Array.
	Objectives:

	
	· Use a sensor to control the TI-RGB Array
· Use a keypress to terminate the program

	The TI-Innovator has an onboard BRIGHTNESS sensor. Imagine a lighting system that adapts to the brightness of the room: When the room is bright, little extra illumination is needed. As the room darkens, the number of extra lights needed increases. Using the TI-RGB Array we can simulate this lighting system by making more LEDs light up as the BRIGHTNESS decreases. This application will build that lighting system simulation.

	1. Begin a new program – we call it britelites() - with the usual starting commands:
Start with Send(“CONNECT RGB”)
and write a While loop that monitors the keypress so that the loop ends when [esc] is pressed:
 While getKey(0) ≠ “esc”
 After the loop, make sure all LED’s are turned off using
 Send “SET RGB ALL 0 0 0”.
	[image:]

	2. Start the body of the While loop by reading the BRIGHTNESS sensor using
 Send “READ BRIGHTNESS”
 Get b

	[image:]

	3. The BRIGHTNESS sensor gives a value from 0 to 100, but you can customize this range for your own lighting situation. Sometimes 0 is difficult to attain so we’ll settle for 5 as a lower bound and we decided that 50 is ‘bright enough’. Note the two If statements we added to the program:
 If b < 5 : b := 5
 If b > 50 : b := 50
You may choose to use different limits depending on your lighting situation, but the maximum range is 0 to 100. You may find a smartphone with a ’flashlight’ helpful to get a wider range of values from the sensor.
Your task is to devise a ‘conversion formula’ to change the brightness value into a number of LEDs to light up. Convert the brightness value b, ranging from 5 to 50 into an appropriate number of LEDs n, ranging from 16 to 0. Use the int() function since we always want to control a whole number of LEDs.
Hint: The equation of the line through two points (a, b) and (c, d) is:
 y = m * (x - a) + b where m is the slope of the line and
 m = (d – b) / (c – a)
Our two points are (5,16) and (50,0). Yours might be different.
	[image:]

	4. Use a For I, 1, n loop to light up the desired number of LED’s and then write another loop to turn off any remaining LEDs. This will ensure that only the needed LEDs are lit without causing them to blink. Remember that the first LED is number 0. Use eval(i - 1) to properly address the LEDs.
5. Your program should properly handle the two extreme conditions: when no LEDs should be lit and when all the LEDs should be lit.
	[image:]

[bookmark: _GoBack]

©2019 Texas Instruments Incorporated	2	education.ti.com
image2.png
Sim

* britelites.

FaD

[4]

Define britelites()=

Prgm

Send "CONNECT RGB"
While getKey(0)="esc"

EndWhile
Send "SET RGB ALL 000"

image3.png
* britelites.

715

Prem
Send "CONNECT RGB"
While getKey(0)="esc”

Get b

i
EndWhile
Send "SET RGB ALL 000"

Send "READ BRIGHTNESS"

image4.png
* britelites.

While getKey(0)="esc”

Send "READ BRIGHTNESS"
Get b

image5.png
* britelites.

2

Fori,1,
Send "SET RGB eval(i-1) 255 255 255"
lendfor

For i,n+1,16
Send "SET RGB eval(i-1) 00 0"

lendfor

EndWhile

image6.jpeg

