[image: TI Logo] 10 Minutes of Code	 	UNIT 6: APPLICATION
 TI-NSPIRE™ CX WITH THE TI-INNOVATOR™ ROVER	STUDENT ACTIVITY
	Unit 6: Coordinates
	Application: Random Walk

	Overview: Explorations with random numbers can lead to fascinating observations. This application gives you opportunities to explore more probability oddities and to program the Rover to move around on a grid.
	Objectives:

	
	· Use coordinate movement to simulate a ‘random walk’
· Use counters and accumulators in a program
· Use compound conditions with not and and

	

	A ‘random walk’ is a computer programming experiment. This activity ties together several different programming skills.

	The Problem:
Suppose your town’s streets are laid out in a square grid pattern and that your school is located at (0,0) on the grid. Your home is at (7,3), which represents 7 blocks east and 3 blocks north of the school. (Consider changes to this position.) The image to the right is a plot of these two points.
Starting at the school, you walk one block in a random direction (north, south, east, or west). At each intersection you then walk one block in a random direction again. Will you ever make it home? How many blocks will you walk before getting home? Will you quit from exhaustion before you get home?
	
[image: C:\Users\JOHNHA~1\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture1-1500634908245.png]

	Planning is an important part of coding. Think about what the Rover can do and what your programming language can do.
Bear in mind that, when working with random numbers, we are at the mercy of the machine. It may take a long time for the Rover to reach home, so we’ll add a stipulation that the Rover is allowed to walk only a limited number of blocks before quitting.

	1. Begin this program with the usual initial statements. Consider setting the Rover’s grid size to something smaller than the default 10 cm.

Recall that the command is found in menu > Hub > Rover (RV) > RV Setup and it changes the Rover’s ‘unit’ of movement (used in FORWARD 1) from 10 cm to something else, allowing for more grid points in a smaller space.
Initializing Variables
2. Store the home location (7,3) and the starting number of blocks walked (0) in the variables home_x, home_y and blocks, respectively. The variable blocks will be used to keep track of the number of blocks the Rover walks and will be used to stop the program if the Rover walks too far. The Rover quits from exhaustion when it walks a specified number of blocks.

We used 20 blocks walked as a value for the exhaustion distance and initialized quit with the value 20.
3. The Rover arrives home when its position, which we refer to as (x, y), is (7, 3). Initialize both of the variables, x and y, to be zero.
	

[image:]

	The Main Loop
4. The main loop of the program consists of a While with two conditions to be addressed. The conditions are making it home (when x=home_x and y=home_y) or quitting from exhaustion (when blocks=quit).
The While loop continues as long as those conditions are false, so we set up the opposite conditions:
 While blocks<quit and not(x=home_x and y=home_y)
Remember that fixed values related to the problem are stored in quit, home_x, and home_y.
not() is used to ensure that the program continues as long as the Rover is not ‘home’. Logically, and not is the ‘opposite’ of or.
5. Remember to include the EndWhile statement if you’re typing code by hand.
	
[image:]

	Inside the Loop
6. Increment blocks (the number of blocks walked):
blocks:=blocks+1
7. Pick a random direction (north, south, east, or west):
· The Rover’s TO ANGLE command turns the Rover to an ‘absolute’ direction: 0 is east, 90 is north, 180 is west, and 270 is south
· randInt(0,3) gives a random Integer from the set 0, 1, 2, and 3
· Multiply that value by 90 to get 0, 90, 180, or 270
· The statement to pick a random direction dir is:
 dir:=90*randInt(0,3)
8. Turn the Rover to the Angle dir: Send “RV TO ANGLE eval(dir)”.

9. Move the Rover forward 1 unit (1 block in our simulation): Send “RV FORWARD 1”.

10. Update the Rover’s position in the program:
· If the Rover goes north, then increase y by 1
· If the Rover goes east, then increase x by 1
· If the Rover goes south, then decrease y by 1
· If the Rover goes west, then decrease x by 1
Include some Wait commands to keep the program in sync with the Rover’s movements. Turning takes time and moving forward takes time. The Wait times depend on the angle of the turn and the distance travelled so you many need to experiment with the Wait values.

	[bookmark: _GoBack]After the Loop
The loop ends in one of two ways:
· If blocks=quit, then the Rover quits walking from exhaustion. Play a sad song, display a red color on the Rover’s LED, and display “Rover quit from exhaustion!” on the handheld screen.
· Otherwise, the Rover must have made it home. Play a happy song, display a green color on the LED, and display a “Rover made it home!” message on the handheld screen.
· In either case, report the number of blocks walked.
· Remember to use EndIf at the end of the ‘If… Then… Else… EndIf’ structure.
Can you get the Rover to do a ‘happy dance’ when it arrives home?

©2018 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png
*Rover - 1..ams < ran {71 B

*roverbapp 4124
Define rover63pp0= 2]
Prgm

© Random Walk from (0, 0) to (7, 3)

Send "CONNECT RV"

Text "Press enter to start." N
home_x:

image4.png
*Rover-1.ams> Rao{fl|F9

*roverbapp 9/22]

TEXT FTESS SITET O SEIT,

B

o »

‘While blocks<quit and not (x=home_.\' and y=hc

EndWhile

image5.jpeg

