

10 Minutes of Code UNIT 4: APPLICATION

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 1 education.ti.com

Unit 4: Loops Application: Bank Notices

This application, “Bank Notices,” makes use of loops to

enter as many values as needed and, as an extension,

checks for valid values entered and uses If statements to

display an appropriate message.

Objectives:

 Use Counter and Accumulator statements

 Use a loop in a program to get an undetermined

amount of data

 Use a ‘flag’ value to terminate a loop

Teacher Tip: This application illustrates the tendency toward complexity when developing a

piece of software. ‘Nesting’ relates to the idea of putting one control structure inside

another. As explained below, the program ‘knows’ which End goes with which statement.

An Example of Nested Structures

 Nesting is the programming technique of placing one control

structure inside another. The term is derived from the idea of

placing one cardboard box inside another in order to save

space.

 A programmer places loops within loops, such as Ifs inside

loops and loops inside Ifs, to accomplish more complex tasks

as the program requires.

 It’s important to put one complete structure completely inside a

block of another structure in order to avoid errors.

 The program listing at the right shows a While loop and an If

structure inside another While loop.

 Notice the multiple uses of the EndWhile statement; the

program ‘knows’ which EndWhile belongs with which While.

 The indenting is for visual confirmation and helps to clarify the

logic.

The program first sets up a loop to continue until the entered value is

zero. Then it tests to see if a<0. If it is, the program displays “Must be

non-negative!” and asks for another value for a. But when a is not

negative then the square root calculation and an If statement is

processed and then the Disp statement is executed. When 0 is entered

the program ends.

Summary of the Three TI-Nspire™ CX Loops:

For(var, start, end) While <condition> Loop

 If <condition> : Exit

EndFor EndWhile EndLoop

For(is used when ‘counting’ or processing an arithmetic sequence of values (iteration).

While is used when you might be able to skip the loop body completely.

Loop is used when you are certain that you want the loop body to run at least once and it must contain an Exit statement,

usually as part of an If statement.

10 Minutes of Code UNIT 4: APPLICATION

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 2 education.ti.com

Teacher Tip: The only ‘necessary’ loop is the While…EndWhile loop. It can perform the

same tasks as the other two loops. Do not use a GoTo statement to exit a Loop structure or

anywhere else in any program. That is bad programming.

There are other control structures in the Control menu that are not covered in this tutorial

series. See the TI-Nspire Reference Guide for more information.

In the square root step, the variable a is multiplied by 1. to ensure that the output is the

same on both a TI-Nspire and TI-Nspire CAS platform. Using a decimal point in an

expression forces the result to be approximate.

Unit 4 Application: Program “Bank Notices”

A bank customer can have several bank accounts at a certain bank. The bank requires a minimum average balance of

$1000 in all of the accounts to avoid paying service charges.

If the average is between $1000 and $1250, then the bank sends the customer a notice with a warning of the potential of

a service charge.

When the average moves above $1250, the bank sends the customer a thank you message for maintaining a good

average balance.

Let’s write a program that gives the user information about their accounts. The user will enter account balances. The

program will determine the average balance amounts, and display the number of accounts, the average of the balances,

and an appropriate message to the user. The messages can be: “SERVICE FEE CHARGED,” “IN DANGER OF A

SERVICE FEE,” and “THANK YOU FOR YOUR BUSINESS!”

We can use two methods for entering an unknown number of values:

 Method 1: Ask for the total number of accounts first and use a For…EndFor loop to enter the values.

 Method 2: Ask for amounts, but use a ‘flag’ value such as -999 to indicate that there are no more accounts. This

method will use a While…EndWhile loop.

In both methods, we will have to keep a running total of the values entered.

In Method 2, we also have to count the number of account balances so that we can divide the total by that count.

Your program should display 1) the number of account balances entered, 2) the average of the account balances, and 3)

the appropriate message based on the balance average.

If the average is below 1000: “SERVICE FEE CHARGED”

If the average is 1000 to 1250: “IN DANGER…”

If the average is above 1250: “THANK YOU…”

Teacher Tip: The section below discusses two related programming ideas: a counter and

an accumulator variable. Emphasize that the variable on the left side of the assignment

operator (Ï) is the same variable as the one on the right but that they represent different

values due to the processing involved.

10 Minutes of Code UNIT 4: APPLICATION

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 3 education.ti.com

Counters and Accumulators

A statement such as c:=c+1 is called a ‘counter’ because it adds 1 to the variable c each time it is executed.

A statement such as t:=t+n is called an ‘accumulator’ because it keeps a running total of the values of the variable n. The

value of n is added to the variable t and then that sum is stored back into the variable t. At the end of a loop, t will contain

the total of the n values encountered.

Here’s an example that uses a counter, an accumulator (total), and a ‘flag’ value (-999) to keep track of the number of

amounts entered in a program:

Prgm

Local counter,amount,total

total:=0

counter:=0

Request "Amount?",amount

While amount≠−999

 counter:=counter+1

 total:=total+amount

 Request "Amount?",amount

EndWhile

Disp "Count=",counter

Disp "Total=",total

endPrgm

Notes

initialize variables

get first amount

as long as it is not -999

add 1 to the counter

add the amount to the total

ask for another amount

Sample Output

The While…EndWhile loop above continues counting and accumulating the amounts as long as -999 is not entered.

When -999 is entered, the loop stops, and the results are displayed.

Teacher Tip: Point out the two Request statements in the code above. The first one gets

the first amount and the last one gets the rest of the amounts. The last one is at the bottom

of the loop to prepare to test the value of amount in the While statement again.

Extension

As part of your input routine, check to make sure that the value entered is a legitimate amount (greater than 0), and take

appropriate action when the entered value is not legitimate.

Teacher Tip: The extension requires another loop around each of the input statements to

make sure the value entered is legitimate. The sample code below simply stops the

program when an invalid value is entered. Encourage students to be eative.

10 Minutes of Code UNIT 4: APPLICATION

 TI-NSPIRE™ TECHNOLOGY TEACHER NOTES

©2018 Texas Instruments Incorporated 4 education.ti.com

Here is one possible solution:

Prgm

local amount, counter, total, avg

0→ amount

0→counter

0→total

Request "ENTER A balance amount: ", amount

While amount ≠ -999

 If amount <0 Then

 Disp "OUT OF RANGE!"

 Stop

 Else

 counter+1→counter

 total+ amount →total

 EndIf

 Request "ANOTHER amount (OR -999): ", amount

EndWhile

total/counter→avg

Disp "NUMBER OF accounts:", counter

Disp "TOTAL OF balances:", total

Disp "AVERAGE balance:",avg

If avg<1000 Then

 Disp "SERVICE FEE CHARGED"

ElseIf avg<1250 Then

 Disp "IN DANGER OF A SERVICE FEE"

Else

 Disp "THANK YOU FOR YOUR BUSINESS!"

EndIf

EndPrgm

Teacher Tip: Try extreme cases such as entering -999 as

the first score. The program will fail when -999 is entered

as the first value because it will attempt to divide 0 by 0

which is undefined.

The calculation of the average should be wrapped in a

test to make sure at least one amount has been entered.

A possible fix is this:

If counter>0

Then

 Avg:=total/counter

ElseIf

 Disp “NO AMOUNTS ENTERED!”

 Stop

End

The Stop statement is used in this program to terminate a

program immediately. This can be added anywhere in a

program so that execution is interrupted and the ‘Done’

message appears.

Encourage students to try changing the Disp statements

to DispAt statements.)

