[image: image9.jpg]

 10 Minutes of Code

Unit 4: Skill Builder 2
 TI-Nspire™ Technology

Student Activity

	Unit 4: Loops
	Skill Builder 2: While

	In this lesson, you will learn about the most versatile of the loops, the While…EndWhile loop.
	Objectives:

	
	· Write a simple While loop
· Use the While loop to ensure valid data entry

	
	

	The While…EndWhile loop (menu > Control) continues to loop as long as its <condition> is True. The structure looks like this:

<initialize the condition>

 While <condition>

 <loop body>

 EndWhile

	· Initialize refers to setting up one or more variables so that the While statement can properly evaluate the condition the first time. The initialization establishes a value of True or False for the variable(s). If the initial condition is False, the loop is skipped. If the condition is True, then the loop body is processed.

· The <condition> is a logical expression such as X>0.
· The <loop body> is any set of statements, including other loops and If structures. The <loop body> is processed whenever the <condition> is True.
· Somewhere in the <loop body>, there must be a statement or statements that alters the <condition>. Without a change in the condition, you will create an infinite loop - a loop that never ends.
· The keyword EndWhile is used to indicate the bottom of the <loop body>. At the EndWhile statement, the program loops back to the While statement and tests the <condition> again. If the condition is False, the loop is finished. If the condition is True, the loop body is processed again.

	This split-screen to the right illustrates a While loop and its output.
The assignment statement k:=1 at the top of the program sets the initial condition to a known False value so that the loop will be processed. Without this initialization, the variable k could be undefined or contain any stored value, introducing an unknown value into the program.
Somewhere inside the <loop body>, there should be a statement that will have an effect on the <condition> so that the loop will eventually end and the statements after the loop can be processed. Usually this statement is near the bottom of the <loop body>. k:=k+1 ensures that eventually k will be greater than n.
	[image: image1.png]while_loop(5)

OO

Done

[Define while_loop(n)-

"While_loop” stored suc

5]

	The program demonstrates the While loop equivalent of the following For loop:

For k,1, n k:= 1
 Disp k While k ≤ n

EndFor Disp k

 k:= k + 1
 EndWhile
This illustrates the power and convenience of using a For loop which is more compact.

	Checking for Valid Input with While…EndWhile
Write a section of a program (a ‘code segment’) that makes sure that the user enters a positive number, tells the user when an entry is invalid, and prompts the user to enter another value in its place.

The output of the code segment is shown to the right with some non-positive numbers entered to see the effect.
Try to write the statements for the While…EndWhile structure without peeking at the next page!

	[image: image2.png]vatid()

Enter a positive number ~4

NOT a positive number!

Enter a positive number -7

NOT a positive number!

Enter a positive number 5

Done

	1. We begin by starting a new program. The name used here is valid.
2. Create a Local variable n, and use the Request statement to get a value from the user. Note that the prompt asks for a positive number.
	[image: image3.png]rao 171 9]
EE

*valid

[Define valid
Prom

Local
Request "Entera positive number”,n

EndPrem

	3. Insert the While structure using menu > Control. Both the While and EndWhile commands are pasted into the code, and the cursor appears after the word While so that the condition can be entered.
	[image: image4.png]rao 171 9]
ES

vl
[Define valid()=
Prem

Local n

Request "Enter a positive numbsr",1
(While |

EndWhile
EndPrem

	4. Type the condition n≤0.

The ≤ operator can be accessed by selecting /=.
	[image: image5.png]rao 171 9]
ES

vl
[Define valid()=
Prem

Local n

Request "Enter a positive numbsr",1
[While n<0|

EndWhile
EndPrem

	5. Finally, complete the loop body by providing an error message. Use the Text statement (menu > I/O) to display “Not a positive number!”
The Text statement pauses the program and displays the promptString in a dialog box.

6. Enter another Request statement (menu > I/O) to let the user enter a value for n again.
	[image: image6.png]rao 171 9]
Vana S/6)

[Define valid
Prom
Local
Request "Entera positive number”,n
[While <0
Text "Nota positive number!"
Request "Entera positive numbe
EndWhile
EndPrem

	The final program valid() to the right produced the interaction seen earlier in this lesson.
Notice the two identical Request statements.

· The first is used to initialize the condition (n≤0). If a positive number is entered at this point, then the loop will not be processed at all.

· However, if 0 or a negative number is entered, then the loop body displays the error message (Text) and Requests another value.
· The Request statements do not have to be identical but they both do have to get a value for the same variable. Can you combine the Text and Request statements in the loop body into one statement?
The loop will continue as long as a non-positive value is entered.

	[image: image7.png]rao 171 9]
Vana S/6)

[Define valid
Prom
Local
Request "Entera positive number”,n
[While <0
Text "NOT a positive number!
Request "Entera positive numbe
EndWhile
EndPrem

[image: image8.jpg]

©2018 Texas Instruments Incorporated
1
education.ti.com

[image: image9.jpg]