[image: TI Logo] 10 MOC: Beyond Basics 	 	THE MAZE GAME: MINI-PROJECT 5
 TI-84 PLUS CE TECHNOLOGY		STUDENT ACTIVITY
	The Maze Game
	Mini Project 5: Create a specific maze

	In this fifth mini-project, you will create a maze. You’ll use lists to store values for each column indicating open and closed doors. You’ll use Pxl-On to turn on pixels.
	Objectives:

	
	· Use Lists to store information
· Use If statements to make decisions
· Use Pxl-On to draw walls

	The MAZE Game Project Overview:
	

	After completing a series of 7 mini-projects, you will have a maze game similar to the one on the right. Projects 1 and 2 will provide skills needed to code movement in the maze game. Projects 3-6 will create code you’ll import and use into your final project.
Mini-Project Order:
	1. Detect which keys are pressed
	2. Use key presses to move string
	3. Draw objects using pixels
	4. Move objects using keypresses and variables
 	5. Create a specific Maze
	6. Randomize maze attributes
7. Create the final maze project.
	[image: Screen Clipping]

	Tech Tip:
This file will be imported to project 6 make sure to give it the appropriate name so it can be found for project 6.

	1. Create a new program named Maze.

In this project you will use lists, loops and the pxl-on command to draw a maze similar to the one below.

	
[image: Screen Clipping]

	2. The maze has 6 columns of walls not including the boarder. (L1, L2…) Each wall has 8 segments.

The maze has 8 rows.
[image:][image:]You will use Lists to store the properties of the walls.1
2
3
4
5
6
7
8
L1 L2 L3 L4 L5 L6
L6
L5
L4
L3
L2
L1

[image:]

The segments are either open or closed.

[image:]closed

open

	3. In each column, we will use the number 1 to present a “closed” door
and a 0 to represent an “open” door. Each column will have eight values.

Finish labeling the other 4 walls.

	
0
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1

[image:]

	4. Does your picture match the one below? You could also write the values to the left of the wall.

[image:] The picture below models the same maze on the left, only
 the first column has two open doors.

[image:]

	5. Now you need to code the status of the six columns.
Store each list of numbers in a separate list.
Make sure to use list {} notation to define your list.
	:ClrDraw
	:{1,0,1,1,0,1,1,1} L1
	:{0,1,0,0,1,1,1,0} L2
	:{1,0,1,1,1,1,0,1} L3
	…Add in the code for L4, L5 and L6

	[image:]

[image: Screen Clipping]

	6. Now you need to draw the walls using pixels.
Each wall segment has a length of 20 pixels.

The top wall has a 1 stored in L1(1).
To code the first door we could use the following.
 (3 + 0, 60)
 (3 + 1, 60)
 (3 + 2, 60)
	…
 (3 + 20, 60)
The next wall is open because 0 is stored in L1(2).

The third wall is solid because 1 is stored in L1(3).
 (3 + 20*2 + 0, 120)
 (3 + 20*2 + 1, 120)
 (3 + 20*2 + 2, 120)
	…
 (3 + 20*2 + 20, 120)

The fourth wall is solid because 1 is stored in L1(4).
 (3 + 20*3 + 0, 150)
 (3 + 20*3 + 1, 150)
 (3 + 20*3 + 2, 150)
	…
 (3 + 20*3 + 20, 150)

Can you write a loop to draw the walls represented in L1?

	

[image:]

	7. L1(1)
 (3 + 20*0 + 0, 60)
 (3 + 20*0 + 1, 60)
 (3 + 20*0 + 2, 60)
	…
 (3 + 20*0 + 20, 60):For(A, 1, 8)
:If L1(A) = 1
:Then
:For(I,0,20)
:Pxl-On(3 + 20*(A-1) + I, 60)
:End
:End

L1(2)
Don’t draw because it’s holding a 0.
Therefore, use an IF to only draw if there
is a 1 in the list.
 (3 + 20*1 + 0, 90)
 (3 + 20*1 + 1, 90)
 (3 + 20*1 + 2, 90)
	…
 (3 + 20*1 + 20, 90) Repeat the code for each List.
L2 should be 30 pixels to the right of L1.
The pixel code would be
:Pxl-On(3 + 20*(A-1) + I, 90)
L3 should be 30 pixels to the right of L2.
The pixel code would be
:Pxl-On(3 + 20*(A-1) + I, 120)

L1(3)
 (3 + 20*2 + 0, 120)
 (3 + 20*2 + 1, 120)
 (3 + 20*2 + 2, 120)
	…
 (3 + 20*2 + 20, 120)

L1(4)
 (3 + 20*3 + 0, 150)
 (3 + 20*3 + 1, 150)
 (3 + 20*3 + 2, 150)
	…
 (3 + 20*3 + 20, 150)

	8. Code the four loops to create the four line segments for the border.

[image:]

	

	9. Does your code look something similar to the code on the right?

	[image: Screen Clipping]

[bookmark: _GoBack]
©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png
NORMAL FLOAT AUTO REAL RADIAN MP n

image3.png
NORMAL FLOAT AUTO REAL RADIAN MP n

image4.png
NORMAL FLOAT AUTO REAL RADIAN MP D

image5.png
NORMAL FLOAT AUTO REAL RADIAN MP D

image6.tmp
AOOHO O A —p— — —

OHOOHOHO ——p — —

co-HoOow—

O O A

OHoOHH—HO — — [

el !

image7.png

image8.png
NORMAL FLOAT AUTO REAL RADIAN MP
EDIT MENU: [a1phal [£5]

PROGRAM: MAZE

:ClrDraw
:{1,0,1,1,0,1,1,135L1
:{0,1,0,0,1,1,1,033L2
:{1,0,1,1,1,1,0,133L3
:{0,0,1,1,0,0,1,1}L4
:{0,1,0,0,1,0,1,033Ls
:{1,0,0,1,0,1,0,133Ls

image9.tmp
Row 3-23
Column 60

Row 23 -43

Column 60 ~_| | |

Row 43 -63
Column 60

Row 63— 83 /

Column 60

image10.tmp
Row 1
Columns 30 - 240

NORALFLORT AUTO REAL RPSLAN HP)

Rows 1 -164
Rows1-164 —— “<— Column 240

Column 30
\ Row 164

Columns 30 - 240

image11.png
NORMAL FLOAT AUTO REAL RADIAN MP
EDIT MENU: [a.1Phal [£5]

PROGRAM: MAZE

:For(A,30,240)
:Px1-0n(1,A,BLUE)
:Px1-0n(164,R)
:End
:For(A,1,164)
:Px1-0n(A,30)
:Px1-0n(A, 240)
:End

image12.jpeg

