[image: TI Logo] 10 MOC: Beyond Basics 	 	BASKETBALL GAME: MINI-PROJECT 7
 TI-84 PLUS CE TECHNOLOGY		TEACHER NOTES
	Basketball Game
	Mini Project 7: The Game

	In this seventh mini-project, you’ll code the scoring components of the game. You’ll create an equation to determine if the ball was a “SWISH” or a “MISS” and give the user feedback. You’ll also learn how to keep track of the number of baskets made overall.

	Objectives:

	
	· import the code from the TOSS file
· use an If statement to determine if the shot is made
· create a flag variable to determine if a new hoop
· should be generated
· use an if statement to determine if another hoop should be generated
· add another While statement to continue play

	The Basketball Project Overview:
	

	After completing a series of 8 mini-projects, you will have a basketball game similar to the one on the right. The code for projects 1 -4 will be imported into project 5. Projects 6-8 will build upon project 5.
Mini-Project Order:
1. Draw the Background
2. Draw the Net
3. Power Gauge
4. Angle Gauge
5. Compile the Projects and Code the Arrow Key
6. Toss the Ball
7. The Game
8. Win the Trophy (and fireworks!)
Detect which Keys are Pressed
	
[image:]

	1. Create a program named BBGAME

You could extend the code in TOSS instead of creating a new file. However, it is a good idea to keep a backup of your code in case you need to start over.

[image: Screen Clipping][image: Screen Clipping]Import the TOSS code
 rcl ()
	prgm
	EXEC
	Select TOSS
 	Press the enter key

Make sure your code works.

	
[image:]

	2. Scroll through your code. At the end of your code there is an IF statement that executes when the enter key is pressed. This section “shoots” the ball.

Now you will code 17 lines to determine if the shot was made or missed.
You’ll update the variables H (hit) and T (total).

Insert 17 blank lines after the DrawF function before the End.

	[image:]

	3. In order to make the shot, the ball needs to pass through the hoop. That means for some X value between 241 and 259, the function should evaluate to a y value between Y and Y-10.

You’ll create a variable, A, to store the amount to add to the score. The value of A will start at 0. You’ll check all 19 x-values to see if one of them evaluates to a Y between Y and Y - 10. If one value matches the criteria, set the variable A to 1. After you check all 19 x-values, add A to the number of hits.

The pseudocode looks like
 Set A to 0
 Loop through all 19 x-values
 If Y < f(x) < Y - 10
 Set A to 1
 Add A to H
 Add 1 to T

Can you add this loop on the blank lines you created in the previous step?

	 [image:]

	4. Does your code look similar to the code below?

:0 A
:For(X, 241, 259)
:95 + tan()*(X-65) – 4.9*((X-65)/(F*cos()))2 W
:If W < Y and W > Y-10
:Then
:1 A
:End
:End
:A + H H
:1 + T T

Run your code. Make sure there aren’t any build errors. There is a slight issue with the calculation you’ll fix in the next step.

	 [image:]

	Teacher Tip:
Make sure students use the degree sign in the calculations to ensure the calculations are done in degree not radian mode. Make sure students have the “and” statement in the if statement. If they cod a compound statement in the
form Y-10<W<Y it will not evaluate correctly.

	5. There is a slight problem with the code. The original Y value of the hoop is lost when the DrawF command executes. Because all built-in graphing routines use the variables X and Y for graphing, the DrawF command graphs a function Y in terms of X, thus Y changes for each value of X in the domain of the window.

To fix this, we will create a temporary variable to store the hoop Y value before DrawF. Then we will store this value back into Y after DrawF.

Insert a line above Draw F and one below Draw F. Then add the following code
 :Y G
 : DrawF ((95 + tan()*(X-65) – 4.9*((X-65)/(F*cos()))2)/(X>65))
 :G Y

	[image:]

	6. If the player made the shot, display “SWISH” otherwise display “MISS”.

In those remaining 7 blank lines, can you:

 -Set the text color to any color you like
 -If the value of A indicates the shot was made,
 use text to display “SWISH” otherwise
 display “MISS”.

*To display the message, you’ll use the Text function in the draw menu.

	[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture1-1596127041225.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture1-1596127059985.png]

	7. Does your code look similar to the code below?

 :TextColor(BLACK)
 :If A = 1
 :Then
 :Text(80,80,“SWISH”)
 :Else
 :Text(80,80,“MISS”)
 :End

	

[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture3-1596126915757.png]

	8. You have a great game already. But, wouldn’t it be nice to not have to restart the program to throw the ball at a new target? Shouldn’t you display the score?

Right now, your program does the following:
 Load the background
 Generate a hoop and draw the net (NET code)
 Draw both gauges (GAUGE and ARC code)
 While the enter key isn’t selected let the user adjust the gauges
 If the arrow keys are pressed
 update the appropriate gauge
 If the enter key is pressed
 draw the path
 update H and T (you haven’t displayed these yet)
 display a descriptive message.
 End the enter key loop

[bookmark: _GoBack]How do you think we’ll modify the program to create continued play and show the score?
	

	9. Look at the modifications below. Are they similar to what you thought?
 Load the background
 Generate a hoop and draw the net (NET code)
 Draw both gauges (GAUGE and ARC code)
 1. While the clear key isn’t pressed continue playing game
 While the enter key isn’t selected let the user adjust the gauges
 If the arrow keys are pressed
 update the appropriate gauge
 If the enter key is pressed
 draw the path
 update H and T (you haven’t displayed these yet)
 display a descriptive message.
 End the enter key loop
 2. Wait until the “+” key is pressed (Use a while)
 3. Generate a hoop and draw the net (NET code)
 4. Draw both gauges (GUAGE and ARC code)
 5. Display the score
 6. End the game loop

It might look a little overwhelming at first. But there will only be a few lines of code for you to actually type. Isn’t it easy to import code using the rcl method? That is one useful reason for modular coding. It allows you to code and debug smaller chunks of code, then import them into larger projects.

	

	10. Let’s tackle the first new section of code.

Draw both gauges (GAUGE and ARC code)
 1. While the clear key isn’t pressed continue playing game
 While the enter key isn’t selected let the user adjust the gauges

It should be below the 0 K. We still need to initialize the value of K before we use it in the while loop.

We’ll use the clear button, number 45, to exit the game.
 :While K45
 :While K105
 :getKey→K
 :If K = 45
 :Then
 :Stop
 :End

	[image:]

[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture23-1596131844892.png]

	11. Close the BBGAME file.

Open the GAUGE file.
If there are any ClrDraw lines, delete them.

Open the ARC file.
If there are any ClrDraw lines, delete them.

If either the GAUGE file or the ARC file have a ClrDraw they will clear out any of newly drawn shapes for the new game.

	[image:]

	12.
[image:]

The code for steps 2 – 6 should go at the very end of your program. The three End statements that are already there will need to stay above the new code you enter.

	[image:]

	13. You don’t want the code to automatically execute a reset. That is why you need a “pause” until the user presses the “+” key to initiate a new shot.

You’ll get the key press value. When the key is a “+” we’ll clear the screen.

 :While K
 :getKey K
 :If K=95
 :Then
 :ClrHome
 :End
 :End

	[image:]

	14. Insert in order the NET code, GAUGE code and ARC code one at a time.

Remember, you’ll use the
 rcl method for each one

	[image:]

	15. The last two steps are to display the score in the upper left corner and end the continuous play loop.

 :Text(1, 1, “SCORE=”, H, “/”, T)
 :End

	[image:]

[image:]

	Teacher Tip:

[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture79-1593632946608.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture82-1593633171164.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture87-1593633204934.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture88-1593633233093.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture89-1593633258354.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture91-1593633282064.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture92-1593633302863.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture97-1593633334926.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture102-1593633370194.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture1-1596132020485.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture2-1596132105119.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture105-1593633410576.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture108-1593633438946.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture109-1593633462313.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture110-1593633486007.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture111-1593633509104.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture112-1593633546297.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture113-1593633597885.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture4-1596129462202.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture6-1596129496780.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture10-1596129548520.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture15-1596129589588.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture16-1596129618750.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture17-1596129651909.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture18-1596129677859.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture21-1596129707123.png]
[image: C:\Users\becky989\AppData\Local\Temp\Texas Instruments\TI-SmartView CE for the TI-84 Plus Family\Capture22-1596129728042.png]

	

©2020 Texas Instruments Incorporated	5	education.ti.com
image2.png

image3.tmp

image4.tmp

image5.png

image6.tmp

image7.tmp

image8.tmp

image9.tmp

image10.png

image11.png

image12.png

image13.png

image14.png

image15.tmp

image16.tmp

image17.tmp

image18.tmp

image19.tmp

image20.tmp

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.jpeg

