
 10 Minutes of Code UNIT 3: SKILL BUILDER 2
 TI-84 PLUS FAMILY TEACHER NOTES

©2015 Texas Instruments Incorporated 1 education.ti.com

Unit 3: Conditional Statements Skill Builder 2: If…Then…End and Compound
Conditions

In this second lesson for Unit 3 you will learn about a
much better conditional structure and compound
conditions.

Objectives:
• Examine the If…Then…End structure.
• Make compound conditions with the logical

operators.
• Write a program using the If…Then…End structure

that examines the regions of the coordinate plane.

The If…Then…End structure

TI Basic has a unique If…Then structure that makes use of the End keyword to
control the statements that form the block of code that will be processed when the
condition is true. It looks like this:

If <condition>
Then
 <true block: do these statements when the <condition> is true
End

Note:
If is followed by some <condition>.
Then is immediately below If, set on a line by itself.
There are one or more statements in the <true block>.
End indicates the end of the Then block and the statements below End will be processed.
End is not the end of the program! It is the End of the If…Then…End structure.

Teacher Tip: This statement is preferred over the previous If statement because it is easier
to read. The ‘block’ can be a single statement (or even no statement at all!). Then and End
appear on their own lines in the program. The ‘block’ can also include another If statement.
Each If Then requires a corresponding End. But we discuss nested structures later on.

Compound Conditions
Compound conditions involve more than one relational expression. The logical
operators and, or, xor and not(are found on the ô LOGIC menu. These
operators allow you to build compound conditions.
Examples:

• X>0 and Y>0 is true when both X and Y are positive
• X>0 or Y>0 is true when either X or Y is positive (or both)
• not(X>0 and Y>0) is true when either X or Y is not positive

it means the same as X<=0 or Y<=0
• X>0 xor Y>0 is true when either X or Y is positive but not both

it means the same as… X>0 or Y>0 and not(X>0 and Y>0)

xor stands for ‘exclusive or’ and is true when either part is true but not both parts.
You cannot ‘string together’ the relational operators: 2<A<3 is interpreted to mean “A is between 2 and 3” and
must be coded as 2<A and A<3. The logical operators have an order of operations just like the arithmetic
operators +, - , *, and /.

A<0 or A<5 and A>2 means A can be negative or between 2 and 5.
and is processed before or (similar to ‘multiplication before addition’).

 10 Minutes of Code UNIT 3: SKILL BUILDER 2
 TI-84 PLUS FAMILY TEACHER NOTES

©2015 Texas Instruments Incorporated 2 education.ti.com

Teacher Tip: Some practice evaluating logical conditions would be helpful here. If you’ve
never done it, truth tables make a good learning activity:

A B A and B A or B not(A)
 True True True True False
 True False False True False
 False True False True True
 False False False False True

Programming with If…Then…End Statements

Try the IFTHEN program to the right.
Note: Input has no variable. This is a special feature of TI-Basic. Recall from
Unit 2 that the GRAPH screen will appear so that you can move the cursor
anywhere and press e to set values for X and Y.
‘and’ is on the ô LOGIC menu.
Then is on a line by itself right below If
End is the bottom of the ‘true’ block (the set of statements that are executed
when the condition is true). It is not the end of the program.

Complete the Program
A graph has several named regions: Quadrants I, II, III, and IV and the
positive and negative x and y axes. Let’s write a program that allows the user
to select a point on the GRAPH screen and then the program will tell where
the point lies using those names.

We’ll start you off with a few If statements and you can finish the rest:

Input notice, no variable!
Disp X,Y
If X>0 and Y>0
Then
Disp "FIRST QUADRANT"
End
If X=0 and Y>0
Then
Disp "POSITIVE Y-AXIS"
End
If X<0 and Y>0
Then
Disp "SECOND QUADRANT"
End
.
.
.

You should have eight If structures (for the four quadrants and the four half-
axes).

Running the program cause this
screen to appear…

…and pressing enter at that
position causes this:

 10 Minutes of Code UNIT 3: SKILL BUILDER 2
 TI-84 PLUS FAMILY TEACHER NOTES

©2015 Texas Instruments Incorporated 3 education.ti.com

Sample Answer:
Input [Notice, no variable]
Disp X,Y

If X>0 and Y>0
Then
Disp "FIRST QUADRANT"
End

If X=0 and Y>0
Then
Disp "POSITIVE Y-AXIS"
End

If X<0 and Y>0
Then
Disp "SECOND QUADRANT"
End

If X<0 and Y=0
Then
Disp "NEGATIVE X-AXIS"
End

If X<0 and Y<0
Then
Disp "THIRD QUADRANT"
End

If X=0 and Y<0
Then
Disp "NEGATIVE Y-AXIS"
End

If X>0 and Y<0
Then
Disp "FOURTH QUADRANT"
End

