Mathematical Methods - Differential Calculus Revision Question Sheet

Author: Chris Ireson
Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

Consider the function $f(x)=\frac{2 x+5}{x+1}$.
a) Find the equation of the gradient function.
b) Find the value of the gradient function when $x=-2$.
c) Find the coordinates of the point(s) on the function $y=f(x)$, where the derivative is -1 .

Response:
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2

Consider the function $h(x)=x^{3}-a x^{2}-4$.
If $a \in Z$, find the value of a, given that a tangent line to the function $y=h(x)$ is $y=-5 x-2$.
\qquad
\qquad
\qquad

Question 3

Consider the functions,

$$
\begin{aligned}
& f:[-3, \infty) \rightarrow R \text {, where } f(x)=e^{2 x}+1 \text { and } \\
& g:(-\infty, 1] \rightarrow R \text {, where } g(x)=2 x-1 .
\end{aligned}
$$

If $h(x)=f(x)+g(x)$,
a) state the maximal domain of $y=h(x)$.
b) state the maximal domain of the derivative of $y=h(x)$.
c) sketch the graph of the derivative of $y=h(x)$, showing the coordinates of all axial intercepts and endpoints correct to 2 decimal places.

Response:

Question 4

Consider the function $f(x)=2 \cos \left(3 x-\frac{\pi}{4}\right)+3$ for $-\pi<x \leq 2 \pi$.

a) How many stationary points does $y=f(x)$ have?
b) Find the sum of the x-values of the stationary points of $y=f(x)$.
c) Find the product of the x-values of the stationary points of $y=f(x)$.

Response:

Answers

Question 1

1.1 1.2 1.3	Doc	RA
© (c) Method 1		
solve $(d f(x)=-1, x)$		$=\sqrt{3}$
A $(-\sqrt{3}-1)$		
$A(\sqrt{3}-1)$		
© Points $(-\sqrt{3}-1,2-\sqrt{3})$ or $(\sqrt{3}-1, \sqrt{3}+2)$		
I		

Question 2

1.3 1.4 2.1	RAD $] \times$
Define $h(x)=x^{3}-a \cdot x^{2}-4$	Done
$\left.\begin{array}{l} \text { solve }\left(\left\{\begin{array}{l} x^{3}-a \cdot x^{2}-4=-5 \cdot x-2 \\ \frac{d}{d x}(h(x))=-5 \end{array},\{a, x\}\right.\right. \end{array}\right)$	$\frac{\sqrt{17}-1}{2} \text { ar }$
© $\mathrm{a}=4$	

Scroll across the Calculator Page to find the required solution. Remember, $a \in Z$.

Question 3

\2.1 2.2 3.1 ${ }^{\text {¢ }}$ - Doc	RAD $\square \times$
a) $\left\lvert\, \begin{aligned} & \mathbf{f}(x):=\mathbf{e}^{2 \cdot x}+1 \mid x \geq-3 \cdot \text { Done } \\ & \mathbf{g}(x):=2 \cdot x-1 \mid x \leq 1 \cdot \text { Done } \\ & \mathbf{h}(x):=\mathbf{f}(x)+\mathbf{g}(x) \cdot \text { Done } \\ & \text { domain }(\mathbf{h}(x), x) \cdot-3 \leq x \leq 1 \end{aligned}\right.$	

The endpoints of the function $y=h(x)$ are defined.
The endpoints of the derivative of a restricted function are not defined, by definition. CAS is used to verify this.

| $3.2 \quad 3.3 \quad 3.4$ |
| :--- | :--- |
| Finding the coordinates of the undefined |
| endpoints on the Graphs Page on Page 3.3. |
| * menu>5:Trace>1:Graph Trace. To find the |
| left endpoint on $\mathrm{y}=\mathrm{f} 1(\mathrm{x})$ type in -2.999999 |
| and press enter for coordinates to appear. |
| A solid dot always appears. To make it an |
| open circle hover over the point and |
| crtl> menu>3:Attributes. |

$$
\begin{aligned}
& \text { solve }(\mathbf{d f}(x)=0, x) \\
& \text { * } x=\frac{-11 \cdot \pi}{12} \text { or } x=\frac{-7 \cdot \pi}{12} \text { or } x=\frac{-\pi}{4} \text { or. } \\
& x=\frac{\pi}{12} \text { or } x=\frac{5 \cdot \pi}{12} \text { or } x=\frac{3 \cdot \pi}{4} \text { or } x=\frac{13 \cdot \pi}{12} \text { or. } \\
& x=\frac{17 \cdot \pi}{12} \text { or } x=\frac{7 \cdot \pi}{4}
\end{aligned}
$$

\section*{| 3.3 | 3.4 | 4.1 | Doc |
| :--- | :--- | :--- | :--- |}

Too many to count, try zeros().
zeros $(\mathbf{d f}(x), x)$
$\cdot\left\{\frac{-11 \cdot \pi}{12}, \frac{-7 \cdot \pi}{12}, \frac{-\pi}{4}, \frac{\pi}{12}, \frac{5 \cdot \pi}{12}, \frac{3 \cdot \pi}{4}, \frac{13 \cdot \pi}{12}, \frac{1}{:}\right.$
Takes too long to count, use count(). Found in the catalog. (∞)
$\operatorname{count}(\operatorname{zeros}(\mathbf{d f}(x), x)) \cdot 9$
**There are 9 stationary points.

\section*{| 3.4 | 4.1 | 4.2 | Doc |
| :--- | :--- | :--- | :--- |}

b) sum(is found in the catalog.
$\operatorname{sum}(\operatorname{zeros}(\mathbf{d f}(x), x)) \cdot \frac{15 \cdot \pi}{4}$
c) product() is found in the catalog.
$\operatorname{product}(\operatorname{zeros}(\operatorname{df}(x), x)) \cdot \frac{-595595 \cdot \pi^{9}}{63700992}$
\mid

