Mathematical Methods – Differential Calculus Revision Question Sheet

Author: Chris Ireson

Each of the questions included here can be solved using the TI-Nspire CX CAS.

Question 1

Consider the function $f(x) = \frac{2x+5}{x+1}$.

a) Find the equation of the gradient function.

b) Find the value of the gradient function when x = -2.

c) Find the coordinates of the point(s) on the function y = f(x), where the derivative is -1.

Response:

Question 2

Consider the function $h(x) = x^3 - ax^2 - 4$.

If $a \in Z$, find the value of a, given that a tangent line to the function y = h(x) is y = -5x - 2.

Response:

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Consider the functions,

$$f:[-3,\infty) \rightarrow R$$
, where $f(x) = e^{2x} + 1$ and $g:(-\infty,1] \rightarrow R$, where $g(x) = 2x - 1$.

If h(x) = f(x) + g(x),

- a) state the maximal domain of y = h(x).
- b) state the maximal domain of the derivative of y = h(x).
- c) sketch the graph of the derivative of y = h(x), showing the coordinates of all axial intercepts and endpoints correct to 2 decimal places.

Response:

© Texas Instruments 2020.

Ű,

Texas Instruments

- a) How many stationary points does y = f(x) have?
- b) Find the sum of the x-values of the stationary points of y = f(x).
- c) Find the product of the x-values of the stationary points of y = f(x).

Response:

© Texas Instruments 2020.

Answers

Question 1

1.1 1.2 1.3 1.3 1.1	Doc RAD [1.1 1.2 1.3 ▶ Doc	rad 🚺 🗙
$f(x) := \frac{2 \cdot x + 5}{x + 1}$	Don	•	©(ъ)	^
2()		11	©Define f'(x) as used in part (c)	
© (a)		11	$df(\mathbf{x}) = \frac{-3}{-3}$	Done
$\Delta \frac{d}{dx}(f(x))$	-3	- 11	(x+1) ²	
ax	$(x+1)^2$		df(-2)	-3
$ \mathbb{O} f'(x) = \frac{-3}{(x)^2} $				
(x+1) ²		•		-
1.1 1.2 1.3 1.3 1.1	Doc RAD [1.2 1.3 1.4 ▶ Doc	RAD 🚺 🗙
$^{\odot}$ (c) Method 1			© (c) Method 2	<u></u>
solve(df(x)=-1,x)	$x = -\sqrt{3} - 1 \text{ or } x = \sqrt{3} - $	1	\triangle zeros($df(x)$ +1,x) {-($\sqrt{3}$ +	1),√3-1}
<i>†</i> (-√3 −1)	2-√3	-	$f(\{-(\sqrt{3}+1),\sqrt{3}-1\})$ {2- $\sqrt{3}$	3,√3+2}
<i>†</i> (√3 −1)	√3 +	2	© Points $\left(-\sqrt{3} - 1, 2 - \sqrt{3}\right)$ or $\left(\sqrt{3} - 1, 2 - \sqrt{3}\right)$	√3 +2)
© Points (-√3 -1,2-				
		*		v

Question 2

Scroll across the Calculator Page to find the required solution. Remember, $a \in Z$.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

The endpoints of the function y = h(x) are defined.

The endpoints of the derivative of a restricted function are not defined, by definition. CAS is used to verify this.

© Texas Instruments 2020.

© Texas Instruments 2020.

You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.