
!"#"$%&'()*+&$#, -./.0*+1.#2+30/&34'.

!"#$%&'()*+,-'.*/0&%,)0*+1203412'.-*1(5*
6%5'()*%(*203*/787((%912%&:*;,<

=$'.3*>'-03&
/?*@3)'%(1$*7(-2&,.2%&
1$'.3A'-03&BCCD)41'$E.%4
F/?G31&(-*D1A'-03&231.0

Session Description
■ Learn the principles of musical scales discovered by the

Pythagoreans to analyze musical notes mathematically
■ Explore how to encode music (including rhythm) by

representing each note with its sound frequency and
duration in time

■ Experience how computational thinking can support the
problem-solving process by learning how to use pattern
recognition and abstractions in coding to efficiently
create music

■ Both TI-84 Plus CE and TI-Nspire™ technology will be
used.

Parents in Oslo, Norway

7(2&%5,.'()*203*/787((%912%&:*;,<

/78H-#'&3:*6I*J&1#0'()*;1(503$5

/787((%912%&:*;,<

7(2&%5,.'()*203*/787((%912%&:*;,<

/78KL*M$,-*6!*J&1#0'()*;1(503$5

/787((%912%&:*;,<

What makes a computer a computer?

What makes a computer a computer?
Description TI-Nspire
Input and Output I/O
Selection(conditional
statements) and Iteration
(looping)

Control

Storage/Memory sto->
:=
Define
Variables

What is the TI-Innovator™ Hub
! The TI-Innovator™ Hub is a project kit that you can

plug into your TI graphing calculators,
! The TI-Innovator™ Hub provides a way to learn basic

coding and design and connect STEM concepts.
! The input/output (I/O) options include three inputs,

three outputs, 10 breadboard ports, one
red/green/blue LED light, a light brightness sensor,
and a speaker for sound output.

https://education.ti.com/en/activities/ti-codes

Pythagoreans and Music

Ancient Greeks (~500 BCE), in particular the Pythagoreans,
are known as the first to investigate musical scales in
terms of simple ratios.
They discovered that a lyre string that is half the length of
a given string emits a musical note that is an octave higher
than that of the given lyre string.

http://passyworldofmathematics.com/guitar-mathematics/

Pythagoreans and Music

70*)1.#&$#5+)$&A#H#I$&*.3J#&'#KL#E)/%?3*.53

Sweet Little Piano Freeware

Sweet Little Piano allows the computer keyboard to act
as a simple piano.

A Little Music Theory

• Musical notes are determined by the frequency of a vibrating
object such as a string in a guitar or piano (measure in Hertz or
cycles per second)

• The notes of the musical scale have a special mathematical
relationship

• There are 12 (half) steps in an octave. If a note has a
frequency, say f, then the next note has a frequency of f ∗ #$ 2.

#$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2=?

A Little Music Theory

#$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2* #$ 2=#$ 2&' =2

The Need for the Irrational
We are using 12th roots of 2, irrational numbers, in order to
encode musical notes based on Pythagoreans' observations
of musical scales in terms of simple ratios.
These early Greek mathematicians were obsessed with the
significance of whole numbers and their ratios, i.e. rational
numbers. They preached that all numbers could be
expressed as the ratio of integers.
They tried to keep the existence of irrational numbers an
official secret of their sect because irrational numbers
threatened their mathematical understanding of the world.

The Need for the Irrational

Híppasus, a Pythagorean philosopher – story exists that
he was sentenced to drowning because he discovered
irrational numbers.

Sound = Frequency + Time Duration
Q The TI-Innovator™ Hub has a

built-in speaker called SOUND.
Q You control the sound by

sending:
Q a frequency value (sound

frequencies are measured in
Hertz (Hz), or ‘cycles per
second’)

Q note duration (in seconds)

Send command
The Send command is used to send commands to the TI-
Innovator Hub that produce a physical reaction (lighting
up a light, making a sound, turning on a motor, etc).

The TI-Innovator Hub commands are found in the Program
Editor’s menu under the Hub submenu.

Frequency
of Notes

TI-Nspire handheld
Music: 5 problems

■ Open music.tns

Hedwig’s Theme from Harry Potter

■ Run Hedwig
program on page
1.5
(.tns file only)

■ Demo with
BoomTouch
speaker

25

• Lists are a data structure that can hold multiple
elements.

• Lists on TI-Nspire are described using curly braces
my_list := {3,4,5}

• Lists on TI-84 are also described using curly braces
• {3,4,5} à L1

• Lists can also be assigned in the Lists and
Spreadsheet app on the TI-Nspire.

Lists

26

Let’s play a note!
Middle C has frequency 262. Write the command that
will play middle C for 3 seconds.

TI-Nspire: Send "SET SOUND 262 3"
TI-84: Send("SET SOUND 262 3")

Problem 1.6: note

L]

Middle C has frequency 261.64.
C sharp has frequency 261.64 " 21/12.
D has frequency 261.64 " 21/12 " 21/12 or 261.64 " 22/12.
Let’s create a variable f and assign it the frequency of C. We
must now use the function eval().

Play 3 consecutive notes (3 half-steps)
TI-Nspire: Page 1.8
TI-84: notes

LH

Play 3 consecutive notes (3 half-steps)
TI-Nspire: Page 1.8
TI-84: notes

L^

Play 3 consecutive notes (3 half-steps)
TI-Nspire: Page 1.8
TI-84: notes

TI-Nspire: Problem 2.1: Scale (in C major)
TI-84: Scale

■ Examine code.
■ What do you notice?

31

• Machines read
frequencies.

• People read notes.
• Assign "note“ variables

corresponding
frequencies

Scale program

_L

Assign values to notes based on "steps"
in musical scale

The code

Send "SET SOUND eval(root_note*2^(freq[i]/12)) eval(time[i])"
Wait durations[i]
Send

! freq (or L1) stores the values that are used to assign
frequencies for each note

! time (or L2) stores the time duration of each note.
! First element in freq and first element in time are used to

encode first note, etc.

Send "SET SOUND eval(root_note*2^(freq[]/12)) eval(time[])"

O'.R4.$0> !+(.#
24')*+&$

TI-Nspire: Problem 3.1: Doe a Deer
TI-84: DOEADEER

Define 2 lists for each song snippet
{ } freq or L1

{ } time or L2

First list stores the frequencies as defined at
beginning of program.
Second list stores the time duration of each note.
Complete the two lists. You must insert commas
in-between the elements of a list inside the curly
braces.

Problem 3.1: Doe a Deer
(from Sound of Music)

B*431-,&3*R*L*<312-

<#########2#########`#######<######`########<#############`

B*431-,&3*R*L*<312-

B*<312*R*

Problem 3.1: Doe a Deer
(from Sound of Music)

B*431-,&3*R*L*<312-

<#########2#########`#######<######`########<#############`

B*431-,&3*R*L*<312-

B*<312*R*

BES CES

Define two lists for Doe a Deer

freq:={c,d,e,c,e,c,e }
time:={ 1.5,0.5,1.5,0.5,1,1,2}

{c,d,e,c,e,c,e } à L1

{ 1.5,0.5,1.5,0.5,1,1,2} à L2

_^

N'&D/.(#aGKA#2&$b*#-*&5#c./+.1+$b#9D>#d&4'$.>:

40

Problem 4.1: Don’t Stop Believin’ (by Journey)

41

{ } freq or L1

{ } time or L2

Define two lists for Don’t Stop Believin’

42

freq:={b,g,a,a,b,rest,e,e,g,g,dhi,dhi,b,a}
time:={0.5,0.5,0.5,1,1.5,3,0.5,0.5,0.5,0.5,1,0.5,1,1.5}

{b,g,a,a,b,rest,e,e,g,g,dhi,dhi,b,a} à L1
{0.5,0.5,0.5,1,1.5,3,0.5,0.5,0.5,0.5,1,0.5,1,1.5} à L2

Define list1 and list2 for Don’t Stop Believin’

43

• Variables that are not defined as local have scope
across pages within the same problem (1.1, 1.2, etc)

• Using global variable constants allows us to easily
control both speed and key of the song!

TI-Nspire: Use of global variables to enable
more control

aa

&%%2T(%23ABL\KG_
-.$6#f-`!#-7gZ2#.1)/9&%%2T(%23XLh9A&3UBi+j8KL::#.1)/92'43Bi+j:f
k)+*#/+3*Li+j

&%%2T(%23 +3#)33+;$.6#(+66/.#<#D4*#0)$#D.#)33+;$.6#)#6+%%.'.$*#
%'.R4.$0>#.)3+/>G#Z&F#3&$;#0)$#D.#5/)>.6#+$#6+%%.'.$*#l.>3G

The code

.1)/9&%%2T(%23XLh9A&3UBi+j8KL::# 9 i j:f

A&3U,3(.V 2'43*5,&12'%(

45

time := time * dur_constant

dur_constant is multiplied by each element in time
list. Therefore song’s speed can now change easily.

The code

46

freq1 list are
already completed.
Complete time1
list.

TI-Nspire only: Problem 5.2: Cry Me a River - Part 1

1 beat =

a]

Fill in time durations
in table for lists time1
and time2.

Problem 5.2: Cry Me a River

time1

48

freq2 list are
already
completed.
Complete time2
list.

Problem 5.2: Cry Me a River - Part 2

1 beat =

49

How can we make this program more efficient? Where do
we see (or hear) duplication and repetition?
How can we allow this program to be more reusable to
create other songs?

Looking for Abstraction

50

• Open sunflower.tns.
• Examine pages 1.1-1.8 – especially page 1.8.
• Run song() on page 1.9.

Sunflower

51

Encode songs more easily by incorporating
abstractions and other tools within our
program design.
• Global variable constants

• For musical notes
• For key and speed of song

• Lists (abstraction)
• Calling on other programs as

subroutines (abstraction) in song()
program

Looking for Abstraction à template.tns

52

Enlist your music teacher and/or musical
students to help create more Lego puzzles!

53

Lego Blocks Template (publisher document)

https://education.ti.com/en/activities/ti-codes

!"#"$%&'()*+&$#, -./.0*+1.#2+30/&34'.

m4.3*+&$3Y
D+*G/>8LeK^!"=43+0k.D+$)'

/01(W*V%,X

=$'.3*>'-03&
/?*@3)'%(1$*7(-2&,.2%&
1$'.3A'-03&BCCD)41'$E.%4
F/?G31&(-*D1A'-03&231.0

