SÉRIES GÉOMÉTRIQUES

Auteur : Alain Ladureau

TI-Nspire™ CAS

Mots-clés : suite, série, convergence, série géométrique.

1. Objectifs

- Introduire la notion de série numérique avec l'exemple de la série géométrique.
- Reconnaître une série géométrique et connaître la condition de convergence.
- Utiliser les fonctionnalités de TI-Nspire dans l'utilisation des séries numériques.

2. Pré requis

On suppose connues les suites géométriques, définition, condition de convergence, expression de la somme en fonction de a et de la raison.

Certains résultats peuvent être vérifiés à l'aide de la calculatrice (voir l'extrait d'écran ci-contre).

L'instruction somme peut être récupérée dans une page de calcul par la touche menu, onglet 4 : Analyse, instruction 5, ou en utilisant le catalogue ou en utilisant les modèles symboles spéciaux accessibles par la touche $[m]_{B}$.

3. Commentaires

On peut conjecturer que la limite de S_n est 2 à la vue de la construction géométrique.

Pour la question 2 et l'utilisation du tableur, il est important de définir en cellule b1, le premier terme de la suite géométrique en utilisant 0,5 plutôt que ½ afin que les calculs soient réalisés en mode approché afin de pouvoir, colonne c, interpréter facilement les réponses pour contrôler la conjecture.

Pour remplir la colonne b du tableur, on place le curseur en cellule b1, on tape = $(0.5)^{a1}$ suivi de enter.

On se replace en cellule b1, touche menu, onglet 3 : Données, on choisit l'instruction 3 : Remplir. On appuie sur la flèche basse du pavé tactile jusqu'à la ligne 15 du tableur, et enfin sur la touche enter.

Pour remplir la colonne [c] du tableur, on place le curseur dans la case grisée de la définition de la colonne, on récupère l'instruction *cumulativeSum* dans le catalogue, on appuie sur la lettre b puis sur [enter].

La conjecture peut alors être vérifiée en se déplaçant dans la colonne [c] jusqu'à la cellule c15.

1.2	1.3	1.4 🕨 *seri	ie geom 🗢		{	X
A		В	С	D		^
♦ =se	eqgen(n					
1	0	1.				
2	1	0.5				
3	2	0.25				
4	3	0.125				
5	4	0.0625				
R1	-(0, 5)4	71			4	
21	=(0.5)				•	

•	1.2	1.3	1.4 🕨 *s	eri	e geom 🗢		×.	X
			В		С	D		
٠	seq	gen(n			=cumulativ			
		10	0.00097	7	1.99902			
12		11	0.00048	38	1.99951			
13		12	0.00024	14	1.99976			
14		13	0.00012	22	1.99988			
15		14	0.00006	51	1.99994			
16								
C15 =1.9999389648438						•	•	

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>

La démonstration demandée permet de réinvestir les résultats concernant les suites géométriques et la condition de convergence de cette suite.

On a
$$S_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^n = \frac{\left(\frac{1}{2}\right)^{n+1} - 1}{\frac{1}{2} - 1} = (-2) \cdot \left[\left(2^{-1}\right)^{n+1} - 1\right] = 2 - 2^{-n-1+1} = 2 - 2^{-n} = 2 - \left(\frac{1}{2}\right)^n$$
.

On peut alors conclure : $\lim_{n \to +\infty} S_n = \sum_{n=0}^{+\infty} u_n = 2$ car la raison $\frac{1}{2}$ appartient à l'intervalle]-1 ; 1[.

5) Généralisation.

Il est possible d'utiliser TI-Nspire dans cette question comme le montrent les écrans ci-dessous. Cependant quelques précautions sont à prendre.

1.3 1.4 1.5	*serie geom 🗢 🛛 🕼 🗙	🖣 1.3 1.4 1.5 🕨 *serie geom 🕁	· 🖌 🛃
$\frac{n}{\sqrt{n}}$	Terminé 🎴	<i>u q</i> -1	q-1
$\left \right\rangle \left(a \cdot q^{i} \right) \rightarrow s(n)$,)	$\lim_{n \to \infty} (s(n))$	undef
$\frac{1}{i=0}$		$n \rightarrow \infty$	
	(+1)	$\lim (s(n)) -1 < q < 1$	undef
3(11)	$a \left[\frac{q^{n+1}}{2} - \frac{1}{2} \right]$	$n \to \infty$	
	\ q-1 q-1 \	$\lim (s(n)) 0 < q < 1$	<u>-a</u>
$\lim_{n \to \infty} (s(n))$	undef	$n \rightarrow \infty$	q-1
$n \rightarrow \infty$	₹		~
	1/3		5/99

La calculatrice donne le résultat lorsque la raison est comprise entre 0 et 1 mais pas lorsque celle-ci est comprise entre -1 et 0 dans le cas symbolique mais répond correctement lorsque la raison est numérique.

