TRANSFORMATION DE LAPLACE

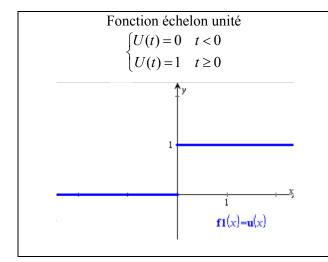
TI-Nspire™ CAS

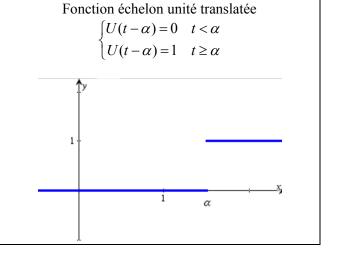
1. Objectifs

- Découvrir la transformée de Laplace.
- Utiliser la transformation de Laplace dans la résolution des équations différentielles linéaires du premier et du second ordre.

2. Fonction échelon unité

On appelle fonction échelon unité (ou fonction de Heaviside) la fonction définie pour tout nombre t réel par : U(t) = 0 si t < 0 et U(t) = 1 si $t \ge 0$.

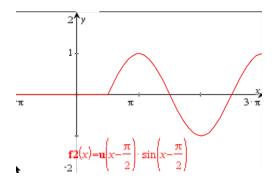




Définition

Une fonction f est dite **causale** si f(t) = 0 pour tout t < 0.

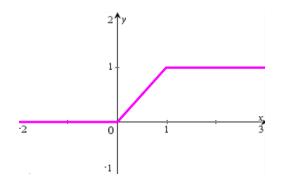
La fonction échelon unité et sa translatée permettent de fabriquer des fonctions causales comme le montre l'écran ci-contre

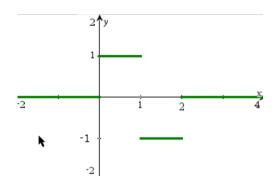


Ce document est mis à disposition sous licence Creative Commons http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Exercice

En utilisant la fonction échelon unité ou sa translatée, donner en fonction de x une expression de f(x)correspondant à chacun des graphiques suivants.





3. Transformée de Laplace

Étude d'un exemple

p désigne un nombre réel positif.

- **a.** Calculer en fonction de a réel positif l'intégrale $I(a) = \int_{a}^{a} u(x) e^{-p \cdot x} dx$ où u(x) désigne la fonction échelon
- **b.** Établir que I(a) a pour limite $\frac{1}{p}$ lorsque a tend vers $+\infty$.

On note $\mathcal{L}(u(x)) = \frac{1}{p} = F(p)$. On appelle ici F la transformée de Laplace de la fonction échelon unité.

Définitions

f étant une fonction causale, on appelle transformée de Laplace de f la fonction F définie par :

$$F(p) = \int_0^{+\infty} e^{-p \cdot x} \cdot f(x) \, \mathrm{d}x$$

F(p) est appelée l'**image** de f, $f \xrightarrow{\mathscr{L}} F$ est la transformation de Laplace

Exercice

En utilisant la calculatrice, déterminer les images des fonctions f telles que : f(x) = x, $f(x) = x^2$, $f(x) = \sin x$.

4. Dictionnaire d'images

Ouvrir une page tableur, renseigner la première colonne comme dans l'écran ci-contre.

Dans la partie grisée de la colonne [b], saisir la formule :

$$= \int_0^{+\infty} e^{-p_- x} . a. dx \mid p_- > 0 \text{ and } a_- > 0$$

Remarque: a désigne la colonne [a]; la notation p_{-} et a_{-} est utilisée afin que la calculatrice ne confonde pas avec la référence du nom de la colonne du tableur.

L'écriture p s'obtient par p ctrl \square .

1	
X	
$\begin{array}{c} x \\ x^2 \\ \hline x^3 \end{array}$	
x^3	
$\cos(x)$	
$\frac{\sin(x)}{e^{-a}x}$	
e^{-a} x	
$\cos(\omega x)$	
$\sin(\omega x)$	

5. Propriétés de la transformation de Laplace

a. Linéarité

Exemple: Déterminer à l'aide de la calculatrice les images suivantes: $\mathcal{L}(2x+1)$) et $2\mathcal{L}(x) + \mathcal{L}(1)$.

$$\mathcal{L}(\lambda f + \mu g) = \lambda \mathcal{L}(f) + \mu \mathcal{L}(g)$$

b. Transformée de f(a.x)

Exemple: Déterminer à l'aide de la calculatrice les images suivantes: $\mathcal{L}((\cos(2x)))$ et $\frac{1}{2}F(\frac{p}{2})$.

$$\mathscr{L}(f(a.x)) = \frac{1}{a}F(\frac{p}{a})$$

c. Transformée de f(x-a), a > 0

Exemple: Déterminer à l'aide de la calculatrice les images suivantes: $\mathcal{L}(\sin(x-\frac{\pi}{3}))$ et $\mathcal{L}((\sin(x)))$.

$$\mathcal{L}(f(x-a)) = e^{-p \cdot a} \mathcal{L}(f(x))$$

d. Transformée de la dérivée

$$\mathcal{L}(f'(x)) = p \ \mathbf{F}(p) - f(0^+)$$

Remarque : $f(0^+)$ désigne la limite à droite de f en zéro.

e. Cas de la dérivée seconde

$$\mathcal{L}(f''(x)) = p^2 \operatorname{F}(p) - p f(0^+) - f'(0^+)$$

f. Transformée de la primitive

$$\mathscr{L}\left[\int_0^x f(t)dt\right] = \frac{F(p)}{p}$$

g. Théorème de la valeur initiale et de la valeur finale

$$\lim_{p \to +\infty} pF(p) = f(0^+)$$

$$\lim_{p\to 0} pF(p) = f(+\infty)$$

6. Transformée de Laplace inverse

Définition

On appelle transformée de Laplace inverse ou original de F(p) la fonction f(x).

Notation : $f(x) = \mathcal{L}^{-1}[F(p)]$.

Exercice

En utilisant le dictionnaire d'images, déterminer les originaux de : $\frac{1}{n^2}$, $\frac{p}{n^2+9}$, $\frac{e^{-a\cdot p}}{n}$.

Propriétés de la transformée de Laplace et de la transformée inverse

N°	f(x)	F(p)
1	$\lambda f + \mu g$	$\lambda F(p) + \mu G(p)$
2	f(a.x)	$\frac{1}{a}F(\frac{p}{a})$
3	f(x-a)	$e^{-p.a} F(p)$
4	$e^{-ax}f(x)$	F(p+a)
5	f'(x)	$pF(p)-f(0^+)$
6	-x f(x)	F' (p)
7	$\int_0^x f(t)dt$	$\frac{F(p)}{p}$
8	$\frac{f(x)}{x}$	$\int_0^{+\infty} F(u) du$

Exercices

En utilisant le dictionnaire d'images et les propriétés cités ci-dessus, déterminer les orignaux de F(p) dans chacun des cas suivants.

1.
$$F(p) = \frac{p}{p^2 + 1} + \frac{1}{(p-2)^2} - \frac{1}{p-4}$$

4.
$$F(p) = \frac{p}{p^2 - 16}$$

2.
$$F(p) = \frac{1}{(p+3)^2}$$

5.
$$F(p) = \frac{1}{p^2 + 8p + 25}$$

3.
$$F(p) = \frac{6}{p^2 - 9}$$

6.
$$F(p) = {2 \over (p-1)^2(p^2+1)}$$

Remarques: pour les exercices 3, 4 et 6, il pourra être utile d'utiliser la fonction Développer du menu *Algèbre*, afin de transformer l'écriture de F(p).

expand
$$\left(\frac{p}{p^2-16}\right)$$
 $\frac{1}{2\cdot(p+4)} + \frac{1}{2\cdot(p-4)}$

Pour l'exercice 4, l'utilisation de la fonction Complétez le carré du menu Algèbre, fournit une écriture intéressante de F(p) comme le montre l'écran suivant :

complete Square
$$\left(p^2 + 8 \cdot p + 25 \cdot p\right)$$
 $\left(p+4\right)^2 + 9$

7. Application de la transformée de Laplace à la résolution d'équations différentielles linéaires

a. La méthode

On notera $\mathcal{L}(y(x)) = Y(p)$ la transformée de y .	On considère l'équation différentielle linéaire du premier ordre : $y' - y = 1$ et $y(0) = 1$
On applique la transformée de Laplace aux deux membres de l'équation différentielle.	$\mathcal{L}(y'-y) = \mathcal{L}(1) \text{ soit } \mathcal{L}(y') - \mathcal{L}(y) = \mathcal{L}(1)$ $pY(p) - y(0) - Y(p) = \frac{1}{p}$
On isole $Y(p)$.	$Y(p) = \frac{1}{p(p-1)} + \frac{1}{p-1}$
On transforme l'écriture du second membre en décomposant la fraction rationnelle en éléments simples.	$Y(p) = \frac{1}{p-1} - \frac{1}{p} + \frac{1}{p-1} = \frac{2}{p-1} - \frac{1}{p}$
On applique alors la transformée de Laplace inverse.	$\mathcal{L}^{-1}(\mathbf{Y}(p)) = \mathcal{L}^{-1}(\frac{2}{p-1} - \frac{1}{p})$
	$y(x) = 2 \mathcal{L}^{-1}(\frac{1}{p-1}) - \mathcal{L}^{-1}(\frac{1}{p})$
On obtient alors la solution de l'équation différentielle.	$y = 2.e^x - 1$

b. Exercices

En utilisant la transformée de Laplace et la transformée inverse, résoudre les équations différentielles suivantes.

(E₁)
$$y' - y = x \cdot e^{x}$$
 et $y(0) = 1$
(E₂) $y' + y = x^{2} - 4x + 3$ et $y(0) = 0$
(E₃) $y'' + 2y' - 3y = e^{-x}$, $y(0) = 0$ et $y'(0) = 1$
(E₄) $y'' - 2y' + y = x \cdot e^{-x}$, $y(0) = 1$ et $y'(0) = 0$

