2008 TI Cup Mathematics Contest

(Grade 11)

Script for Individual Contest
(9:00AM ~ 10:30AM, May 25, 2008)

No.	I	II	III	IV	Total Score
Score					
Marked by					
Reviewed by					

I. Fill in the blanks: (total 60 marks for 8 questions, with 6 marks for each of the first 4 questions and 9 marks for each of the last 4 questions)

1. The positive real solution(s) of the equation $5^{5}+x^{5}+7^{5}+x^{5}+8^{5}=54748$ is/are \qquad .
2. Evaluate:
(1) $\sqrt{627953481}+\sqrt{672935481}=$ \qquad ;
(2) $\sqrt{\sqrt{254817369}-\sqrt{152843769}}=$ \qquad .
3. The cubic function $y=a x^{3}+b x^{2}+c x+d$ that passes through the points $(3,8)$, $(4,30),(5,72)$ and $(6,140)$ is \qquad .
4. If the numbers shown on die A and B are a and b respectively, then there are
\qquad pairs of (a, b) such that the quadratic equation $x^{2}-2(a-3) x-b^{2}+9=0$ has real solutions.
5. Find all the 3-digit positive integers that are equal to the last 3 digits of their respective squares: \qquad -.
6. The maximum value of the function $y=\sqrt{3-4 x}+\sqrt{2 x+1}$ is \qquad .
7. The moon M is right on the horizon when it is observed from the North Pole N, and at 57' north to the zenith when it is observed from a point P on the equator. Given that the radius of the earth R is 6370 km , and the center of earth O lies on the same plane containing N, P and M, the minimum distance from the moon M to the surface of the earth is \qquad km (to the nearest $10^{3} \mathrm{~km}$).

8. Define $s(m)$ as the sum of all digits of the positive integer m, then $s(1)+s(2)+\cdots+s(2008)=$ \qquad .

Please give the necessary steps in your solutions to the following 3 problems:
II. (20 marks) Find all positive integers n such that

$$
\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]+\left[\frac{n}{5}\right]=69,
$$

where $[x]$ denotes the greatest integer less than or equal to x.
[Solution]
III. (20 marks) As shown in the figure, $O H$, the perpendicular distance from the center of a circle O to a chord, is 2008. Two squares $A B C D$ and $A_{1} B_{1} C_{1} D_{1}$ are constructed inside the two segments of the circle, such that the points A, D, A_{1}, B_{1} are on the circumference, and the points B, C, C_{1}, D_{1} are on the chord. Find the difference between the lengths of the sides of the two squares. [Solution]

IV. (20 marks) A disk G (including its circumference) is centered at the point $A(2008,525)$ with radius 1 in the Cartesian plane. Given that the parabola $y^{2}=2 p x$ intersects disk G, find the range of possible values of p (correct to the nearest 0.001).
[Solution]

