
 Texas Instruments 2022. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

Is your computer running slow? Time to upgrade? Think again; computer upgrades are

not what they used to be. Improvements in computing speed traditionally came from CPU

and memory upgrades; most improvements now come from improved algorithms and

software developments. Graphical user interfaces demand more power and memory.

To understand what is happening, we need to step back a few decades.

In 1983 Apple® introduced LISA, the first commercially available computer with a

graphical user interface (GUI), the 5Mb hard drive was an optional extra. The inspiration

for Lisa came from something Xerox® had been using for almost a decade. The

photocopying behemoth had created a computer called: “Alto” to help make their offices

run more efficiently. The GUI that Xerox developed (1974) was called Smalltalk. Users

had a three-button mouse, desktop clock, calendar, email, spreadsheet and a word-processer. It is fair to say Xerox was

creating the paperless office, not exactly something a photocopying company would want widely adopted. Ironically, they

also developed the laser printer, something that would become more pervasive through the use of personal computers.

Smalltalk was the first object-oriented language allowing programmers to use these objects within their programs without

having to know how the object worked. In 1985 Microsoft® introduced Windows®. Applications in Windows ran on a

platform called MS.DOS (Microsoft’s Disk Operating System). Creating an application to work in Windows meant you could

rely on MS.DOS to handle all the background computer management. Windows 1.0 required 256kB of memory and at

least two floppy drives or 256kB hard-drive. The processor speed was approximately 5MHz and only 16bit. Fast-forward

35 years, Windows 11 requires a minimum 1 GHz twin core 64bit processor, 4GB RAM and 64GB storage. How did we

get to the point? The simple answer is that processors and memory became cheaper allowing developers to add more

and more layers to their code. From the 1980’s to early 2000’s, computer processing speeds increased almost

exponentially. For the past 15 years, the same speed increases have not been possible.

This booklet aims to illustrate how mathematics and coding can be used to improve computational speeds without relying

on hardware updates. The activities and investigations are also designed to improve understanding of number. The

hierarchical nature of the mathematical content and structure of the coding require these activities be completed

sequentially. Each activity includes coding instructions and references, visual and instructional support for mathematical

content, reflective questions and a detailed investigation. The 10 minutes of coding references should be completed before

commencing the corresponding activity. Coding instructions are included in each activity; however, it is also recommended

that the code be modified to improve performance. The first activity “Factors that Count” involves writing a program to

count the quantity of factors for any given number. The sample code provided is a ‘brute force’ approach; this code can

be modified to achieve the same result much, much faster! The “Euler Totient” activity repeatedly requires information

about the factors of a number; the factor program could be called upon for this purpose, however alternative algorithms

can also be used that make the program run many, many times faster.

Why focus on number? Aside from the fact that the mathematical content is accessible, the importance of factors, or the
lack of them (prime numbers) is critical to our world’s economy thanks to encryption. Many trillions of dollars are digitally
transacted every day, the security of these transfers relies on prime numbers and the fact that current algorithms are not
particularly efficient at disassembling numbers.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

2 Code by Numbers

Table of Contents
Factors that Count ... 3

Finding and Counting Factors ... 3

Writing a Program ... 4

Investigation .. 6

Euclid’s Algorithm .. 7

Highest Common Factors ... 7

Writing a Program ... 8

Investigation .. 9

Euler Totient Function ... 10

Introduction ... 10

Writing a Program ... 10

Investigation .. 12

Highly Composite Numbers .. 13

Introduction ... 13

Writing a Program ... 13

Investigation .. 14

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

3 Code by Numbers

TI-Codes Lessons:

Unit 1 – Skill Builder 1

Unit 4 – Skill Builder 1

Commands:

• Request <input>

• For <counter> EndFor

• If <condition> Then <instruction>

• Disp <output>

Finding and Counting Factors
There are many ways to determine the quantity of factors for a specified number. The most common method is to test the

divisibility for all applicable numbers. For example, suppose we want to determine the quantity of factors for 18. We can

determine the quotient and remainder for all the numbers from 1 to 18.

Table 1A

Divisor 1 2 3 4 5 6 7 8 9

Quotient 18 9 6 4 3 3 2 2 2

Remainder 0 0 0 2 3 0 4 2 0

Table 1B

Divisor 10 11 12 13 14 15 16 17 18

Quotient 1 1 1 1 1 1 1 1 1

Remainder 8 7 6 5 4 3 2 1 0

Our conclusion is that 18 has six factors since there are six occasions whereby the remainder is equal to zero.

This divisibility check for all numbers is exhaustive. You may have ideas about how this process can be made more

efficient, however, this method will provide a basis for an algorithm on which to write a simple program to count the

quantity of factors for a given number. You can make the necessary improvements and checks once your initial program

is complete and functioning.

Question: 1.

Write a description of the steps required to determine the quantity of factors for any whole number: n.

Instructions:

On the home screen, select the math key and locate the remainder(

command using: Math > Num > 0:remainder(.

Determine the result of the following calculations:

 Mod(18,6)

 Mod(18,5)

 Mod(18,12)

Question: 2.

Based on your experimentation, what value does the MOD command return?

Question: 3.

If MOD(a, b) = 0, what does this say about the relationship between a and b?

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

4 Code by Numbers

Writing a Program

Create a new program by selecting:

 Prgm > Python App > New

Call the program: FactCoun

Note that ‘FactCoun’ is one word as program names cannot contain

spaces.

Use the keys at the top of the calculator keypad to activate the selections on the bottom of the screen e.g.

zoom will activate the “New” key.

In order to perform math tasks, insert the python math module.

Select Fns… > Module > 1:math

The next step is to request a number from the user. Note: The input

command will generate a string variable type, in order to change this to

numerical type, use float() or int()

 Select Fns… > I/O > 2:input() The input command can

include a text prompt. Be sure to store the input in a variable.

 n=float(input(“num? “))

• Quotation marks: “ ” can be entered by pressing [alpha] + [+] (addition sign)

• The question mark is located above the negation ((-)) key.

Define a function that will count the factors and return the count. A

counter variable will be used to ‘count’ the quantity of factors. The

counter must be set to zero before the counting process begins.

 count = 0

Start a For loop by selecting:

 Fns… > ctl > 4: for i in range(size)

The loop will start at 0 and finish at n-1 and use i to track the number of

times the loop has been executed.

 for i in range(n):

• Since the for loop counts from 0 to n-1, use i+1 in your function to shift the values of the loop to go

from 1 to n.

An IF statement will be used to check if the user’s number has a factor

each time the program executes the loop.

The IF command can be selected by:

 Fns… > ctl > 1: if ..

Between the IF and the colon, insert the statement:

 fmod(n, i +1) == 0:

Note that ‘fmod’ can be typed directly from the keyboard or accessed

through the menu under the math module.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

5 Code by Numbers

Move the cursor into the indented line below if. This indented block of

code is only executed if the condition: fmod(n, i +1) == 0: is TRUE.

Insert the command:

 count = count + 1

A function must return a value to the program. Select return from the

menu and return count.

From the I/O menu select print() and type the command:

 Print(“Qty Factors: “, count)

Select Run to run the program. A python shell will be launched and the

user will be prompted with the input “n?”

Start by checking the factor count for 18.

The table at the start of this activity indicates the program should identify

6 factors.

Question: 4.

Determine the quantity of factors for each of the following numbers:

a. 24

b. 36

c. 37

d. 144

Check each of your answers by writing down all the factors.

Question: 5.

Determine the quantity of factors for each of the following numbers. Identify a specific characteristic about the

quantity of factors and use this to classify the numbers into two groups, explain your classification.

29, 84, 104, 87, 22, 37, 101, 97, 45, 43, 133, 153, 173, 107

Question: 6.

Determine the quantity of factors for each of the following numbers. Identify a specific characteristic about the

quantity of factors and use this to classify the numbers into two groups, explain your classification.

28, 30, 90, 45, 50, 60, 120, 72, 25, 49, 81, 144, 441, 82, 24, 720.

Question: 7.

The FactorCount program works, but it could be more efficient. Use a stop watch to time how long the program

takes to count the number of factors for: 10,000; 20,000 and 30,000. Use these times to predict how long the

program will take to count the factors for 40,000. Test your answer!

If you are satisfied with your prediction, how long would it take to find factors for the following number:

2,140,324,650,240,744,961,264,423,072,839,333,563,008,614,715,144,755,017,797,754,920,881,418,023,447,

140,136,643,345,519,095,804,679,610,992,851,872,470,914,587,687,396,261,921,557,363,047,454,770,520,8

05,119,056,493,106,687,691,590,019,759,405,693,457,452,230,589,325,976,697,471,681,738,069,364,894,69

9,871,578,494,975,937,497,937 [250 digits!]

Note: This number is associated with RSA Encryption.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

6 Code by Numbers

Investigation
Why are factors important? To answer this question, consider the opposite situation, the absence of factors. Billions of

dollars are moved around electronically every day, to do this securely, the electronic transfers must be encrypted. The

most common encryption method (RSA) is built around very large prime numbers, numbers with an absence of factors!

All encryption methods are essentially built on numbers, so being able to ‘assemble’ and ‘disassemble’ numbers is

extremely important.

Your task is to find a rule that determines the quantity of factors for any whole

number, given the prime factorisation of that number.

A few clues are provided along the way to help you on your factor sleuth

journey. Document your search findings and conclusions using the clues and

your constructed program to help expedite your investigation.

Clue 1:

Determine the prime factorisation and corresponding quantity of factors for

the following numbers: 36; 100; 441; 3025 & 48841.

Clue 2:

Determine the prime factorisation and corresponding quantity of factors for

the following numbers: 24; 250; 1029; 6655 and 198911.

Clue 3:

Based on the first two clues, generate some numbers that you believe have exactly 8 factors. Test your numbers

and comment on the results.

Clue 4:

Determine the prime factorisation and corresponding quantity of factors for the following numbers: 2000; 64827;

107811; 668168 and 1585615607. [Note: For this last number you will need a fast algorithm!]

Clue 5:

Create some numbers of the form: m2 x n5 where m and n are both prime. Determine the quantity of factors for each

of your numbers. [Note: You may want to choose relatively small prime numbers for m and n.]

Continue the exploration, tabulate your results and record your thoughts, hypotheses, tests and reflections as you go.

Documenting findings is an important part of the investigative process. Detectives may have many suspects in their initial

investigations, however as more clues surface they develop hypotheses. Detectives test each hypothesis, review what

they already know or go in search of more clues. Some investigations end up as Cold Cases, however it is critical that

detailed documentation of all aspects of their investigation are retained in the event the investigation is re-opened.

Some crimes remain unsolved despite having significant suspects, in mathematics these are often called ‘conjectures’, a

theory that seems to work but has never been proven.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

7 Code by Numbers

TI-Codes Lessons:

Unit 1 – Skill Builder 1

Unit 4 – Skill Builder 2

Commands:

• Request <input>

• While <condition> EndWhile

• If <condition> Then <instruction> Else <instruction>

• Disp <output>

Highest Common Factors

The Highest Common Factor (HCF) or Greatest Common Divisor (GCD) of two numbers is useful for many

reasons. The process is valuable when working with fractions, solving packaging problems, developing traffic

light sequences and encrypting content for digital communications. Developed more than 2000 years ago,

Euclid’s algorithm is still the most efficient process used to determine the Highest Common Factor of two

numbers.

Euclid’s Algorithm:

 LINE #1: IF A = 0 THEN GCD(A,B) = B since GCD(0,B) = B

 LINE #2: IF B = 0 THEN GCD(A,B) = A since GCD(A,0) = A

 LINE #3: A = B x Q + R … where Q is the quotient and R is the remainder

 LINE #4: GCD(B,R) = GCD(A,B), now find GCD(B,R)

This algorithm will make more sense when some numbers are used for A and B. Suppose we want to find the

highest common factor of (A) 1260 and (B) 385. As neither A = 0 or B = 0 we progress to LINE #3.

 1260 = 385 x 3 + 105 [We say that 105 is the remainder when 1260 is divided by 385]

According to LINE #4 of Euclid’s algorithm: GCD(1260,385) = GCD(385,105)

We apply the algorithm again. Since 385 0 and 105 0 we proceed to LINE #3.

 385 = 105 x 3 + 70 [We say that 70 is the remainder when 385 is divided by 105]

According to LINE #4 of Euclid’s algorithm: GCD(1260,385) = GCD(385,105) = GCD(105,70).

We apply the algorithm again. Since 105 0 and 70 0, we proceed to LINE #3

 105 = 70 x 1 + 35 [We can say that 35 is the remainder when 105 is divided by 70]

We are getting close! According to LINE #4 of Euclid’s algorithm: GCD(1260,385) = … = GCD(70,35)

Applying the algorithm one more time, as 70 0 and 35 0, we proceed to LINE #3.

 70 = 2 x 35 + 0. [This time the remainder is 0!]

Now we can apply LINE #1 or LINE #2 since we have GCD(35,0) = 35.

Our conclusion is that the Highest Common Factor or Greatest Common Divisor of 1260 and 385 is 35.

Question: 1.

Use Euclid’s algorithm to identify the highest common factor of: 3850 and 3234.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

8 Code by Numbers

Writing a Program

Instructions:

Start a new program.

In the python editor select new.

Call the program: EGCD

Insert the math module. And call for inputs for a and b. (See opposite)

Euclid’s algorithm ceases when either a = 0 or b = 0, an easy way to

check this is: a x b = 0. The “null factor law” states that if the product of

two numbers is zero, then one or both of the numbers must be zero.

The algorithm should continue to run while a x b 0.

 Fns… > Ctl > while condition:

The “not equals” sign can be accessed from the test menu:

2nd > test > 3: x!=y

Note that in python not equal is expressed !=.

Modular arithmetic returns the remainder when a b (where a > b) so

an If … Then … Else … statement can be used to process Line #3 of

Euclid’s algorithm.

 Fns… > Control > If...Then...Else... EndIf

The fmod() command can be typed directly or accessed from the

catalogue. Enter the corresponding modular arithmetic calculations,

note carefully the respective orders for a and b.

That’s the entire algorithm! The only thing remaining is to display the

results. You can use a display command such as:

 print(gcd(a,b))

Question: 2.

Determine the highest common factor of: 1914 and 7293 (by hand) using Euclid’s algorithm and use your

results to check the program.

Question: 3.

Test your program on some smaller numbers where you know the highest common factor. Record your

test results.

Question: 4.

The Num menu under the Math key contains a command to determine the highest common factor of two

numbers. Make a copy of your program and update it to find the highest common factor of three

numbers.

Example: EGCD3.py

Test and evaluate your program.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

9 Code by Numbers

Question: 5.

Edit your program to test for the highest common factor of an entire list of numbers.

Note: The program can be defined as egcdl.py where list is a list of numbers: #, #, #, ... The len()

command can be used to determine the length (quantity of numbers) of the list.

Investigation
The prime factorisation of a number can be used to efficiently find the highest common factor of any two or more
numbers. Use your program to find the highest common factor for each list of numbers (below). Write the original
numbers and the highest common factor in terms of their prime factorisation. Try some of your own lists, then write a
description of how you can use the prime factorisation to determine the highest common factor of any two or more
numbers.

 List 1: 1260, 1410, 2040, 4290 & 9570

 List 2: 220, 1400, 1700, 30940 & 154700

List 3: 2964, 3588, 8892, 10764 & 409032

List 4: 399, 441, 1911, 3381, 5733 & 835107

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

10 Code by Numbers

TI-Codes Lessons:

Unit 1 – Skill Builder 1

Unit 4 – Skill Builder 1

Commands:

• Request <input>

• For <counter> Endfor

• If <condition> Then <instruction> Else <instruction>

• Disp <output>

Introduction

The Euler Totient Function for a whole number ‘n’ counts the quantity of numbers that are co-prime up to the

number n. To help understand this definition, consider the number 12.

We need to check which numbers: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} have a factor in common with 12, these

numbers are discarded leaving us with the numbers that are co-prime. This is summarised in the table below.

Whole Numbers < n 1 2 3 4 5 6 7 8 9 10 11 12

Highest Common Factor 1 2 3 4 1 6 1 4 3 2 1 12

There are 4 numbers where the highest common factor is 1, these numbers are co-prime with 12: {1, 5, 7, 11}.

The Euler Totient function for 12 is therefore equal to 4, this can be written as: (12) = 4.

Here is another example for the number 9.

Whole Numbers < n 1 2 3 4 5 6 7 8 9

Highest Common Factor 1 1 3 1 1 3 1 1 9

The Euler Totient function for 9 is therefore equal to 6, this can be written as: (9) = 6.

Question: 1.

Create some pseudo-code for the Euler Totient function.

Writing a Program

Instructions:

Replicate the EGCD.py program and call the program ETF.

 Files > Manage > Replicate

Call the program: ETF

Edit the input commands and be sure to change the type to float to store

a value to n. You’ll only want one input.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

11 Code by Numbers

A counter is required to track the quantity of numbers that are co-prime

with n.

Initialise a counter: c=0; then insert a For loop.

Just like the examples, all the numbers from 1 to n need to be checked.

If the highest common factor (greatest common divisor) between n and

the loop counter is equal to 1, then increase the counter value.

Once the loop has finished, add a ‘print’ command to show the value of

the Euler Totient function.

Question: 2.

Check that your program produces the same results for the two worked examples, then try several others

(by hand) and compare results.

Question: 3.

Explore the Euler Totient function for prime numbers, what do you notice?

Question: 4.

Determine the fraction:
()

n

n
 for the following values of n: 30, 60 and 90, comment on the results.

Question: 5.

The number 100 can be expressed as: 22 x 52. Compare the Euler Totient value for 100 with the

following calculation:

1 1

100 1 1
2 5

 − −

Question: 6.

The number 1125 can be expressed as: 32 x 53. Compare the Euler Totient value for 1125 with the

following calculation:

1 1

1125 1 1
3 5

 − −

Question: 7.

Use the previous to questions to explore the prime factorisation approach to the Euler Totient function

with the Euler Totient value determined by your program.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

12 Code by Numbers

Question: 8.

How does the prime factorisation approach to calculating the Euler Totient function explain your results to

Question 4?

Question: 9.

Why does the ‘short cut’ approach to the Euler Totient function work?

Investigation

Re-write the Euler Totient function program to determine the Euler Totient function for a range of

numbers, graph the results and explore any patterns.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

13 Code by Numbers

TI-Codes Lessons:

Unit 1 – Skill Builder 1

Unit 4 – Skill Builder 2

Commands:

• Request <input>

• While <condition> EndWhile

• If <condition> Then <instruction> Else <instruction>

• Disp <output>

Introduction

A highly composite number has more factors than any of its predecessors. Think of it as competition along the

number line. The difficulty in locating highly composite numbers is that you must already know the previous

highly composite number in order to identify how many factors the next number must have in order to qualify.

Any search for highly composite number therefore generally starts at 1.

Whilst 1 only has one factor, there are no predecessors, so by default, 1 is the first highly composite number.

Naturally 2 is the next highly composite number having two factors. The next is 4 with three factors then 6 with

four factors. With one, two, three and four factors already checked, it would be easy to assume that the next

highly composite number would have five factors, however 12 is the next highly composite number with six

factors.

Question: 1.

Write a description of a program that will determine the Highly Composite number up to some value n.

Note: The quantity of factors for any number can be references as ‘factor_count’.

Writing a Program

Instructions:

Open the Python app, select the factor count program and duplicate the

program. Call the program: HCN.

As before you will need the math library and you need to ask the user

for the highest number to be searched and convert its type to float.

The factor counting function will need to be updated to be very efficient

as it is called upon many times!

The sample code shown opposite is a relatively fast factor counting

function that can be used in a for loop.

 There are a few variables to be set up for this program. It seems

appropriate to record the highly composite numbers and as an added

check, record the quantity of factors for each.

 hcns=[] [List of Highly Composite Numbers]

 facts=[] [List for the quantity of factors]

 rec=0 Track most recent HCN.

 Texas Instruments 2023. You may copy, communicate and modify this material for non-commercial educational purposes
provided all acknowledgements associated with this material are maintained.

 Authors: C. Brown
 & P. Fox

14 Code by Numbers

If the most recent factor count is higher than the previous record then

the list of highly composite numbers (hcns) needs to be updated, so too

the record for the quantity of factors (facts) and finally, the record itself

needs to be updated.

Question: 2.

Run your program and check that the first five highly composite numbers are: 1, 2, 4, 6, 12; then

determine all the highly composite number from 1 to 100.

Question: 3.

Determine all the highly composite numbers from 1 to 1000 and their corresponding quantity of factors.

Question: 4.

Express each of the Highly Composite Number in the previous question as a product of its prime factors.

Question: 5.

Study the prime factorisations closely. Suggest a possible prime factorisation for the next highly

composite number, the corresponding number and quantity of factors.

Note: You may have more than one educated guess.

Investigation
To continue exploring Highly Composite Numbers, a more efficient program (or new program) is required, one that no

longer starts at 1, rather one that starts at some previously identified Highly Composite Number and uses information

gleaned from the first sixteen highly composite numbers.

• Re-write your HCN program so that it can start at any HCN.

• Continue recording HCNs and the corresponding prime factorisations. When and what will be the next prime

factor to be included in the prime factorisation?

• Identify any patterns you can find in the prime factorisation that would help in locating subsequent prime

factorisations.

• What prior learning are you using to identify the quantity of factors, make predictions and search?

