TI in Focus: AP® Calculus 2022 AP® Calculus Exam: BC2 Scoring Guidelines and Solutions

Stephen Kokoska Professor Emeritus, Bloomsburg University Former AP® Calculus Chief Reader

*AP is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.

Outline

- (1) Free Response Question
- (2) Point Distribution
- (3) Solutions (using technology)
- (4) Scoring Notes
- (5) Common Errors
- (6) Problem Extensions

Part A (BC): Graphing calculator required **Ouestion 2**

General Scoring Notes

The model solution is presented using standard mathematical notation.

Answers (numeric or algebraic) need not be simplified. Answers given as a decimal approximation should be correct to three places after the decimal point. Within each individual free-response question, at most one point is not earned for inappropriate rounding.

A particle moving along a curve in the xy-plane is at position (x(t), y(t)) at time t > 0. The particle moves

in such a way that $\frac{dx}{dt} = \sqrt{1+t^2}$ and $\frac{dy}{dt} = \ln(2+t^2)$. At time t = 4, the particle is at the point (1, 5).

	Model Solution	Scoring	
a)	Find the slope of the line tangent to the path of the particle at time t	= 4.	
	$\left. \frac{dy}{dx} \right _{t=4} = \frac{y'(4)}{x'(4)} = \frac{\ln 18}{\sqrt{17}} = 0.701018$	Answer	1 point
	The slope of the line tangent to the path of the particle at time $t = 4$ is 0.701.		

Solution

$$\left. \frac{dy}{dx} \right|_{t=4} = \frac{y'(4)}{x'(4)} = \frac{\ln(2+4^2)}{\sqrt{1+4^2}} = \frac{\ln 18}{\sqrt{17}} = 0.701$$

∢ 1.1 ▶	*bc2	rad 📋 🗙
$xp(t):=\sqrt{1+t^2}$		Done
$_{\mathcal{VP}}(t){:=}{\ln \left(2{+}t^{2}\right) }$		Done
$\frac{yp(4)}{xp(4)}$	1	$\frac{\ln(18)\cdot\sqrt{17}}{17}$
$\frac{yp(4)}{xp(4)} \cdot 1.$		0.701018

Scoring notes:

• To earn the point, the setup used to perform the calculation must be evident in the response. The

following examples earn the point:
$$\frac{y'(4)}{x'(4)} = 0.701$$
, $\frac{\ln(2+4^2)}{\sqrt{1+4^2}}$, or $\frac{\ln 18}{\sqrt{17}}$.

Common Errors

- (1) Most students recognized the need to find $\frac{y'(4)}{x'(4)}$.
- (2) There were some communication errors, especially in equating a function to a specific value.
- (3) Some students presented the reciprocal of the correct answer.

BC2 Particle Motion

(b) Find the speed of the particle at time t = 4, and find the acceleration vector of the particle at time t = 4.

$\sqrt{(x'(4))^2 + (y'(4))^2} = \sqrt{17 + (\ln 18)^2} = 5.035300$	Speed	1 point
The speed of the particle at time $t = 4$ is 5.035.		
$a(4) = \langle x''(4), y''(4) \rangle = \langle \frac{4}{\sqrt{17}}, \frac{4}{9} \rangle = \langle 0.970143, 0.444444 \rangle$	First component of acceleration	1 point
The acceleration vector of the particle at time $t = 4$ is $\langle 0.970, 0.444 \rangle$.	Second component of acceleration	1 point

Solution

Speed =
$$\sqrt{[x'(4)]^2 + [y'(4)]^2} = \sqrt{17 + (\ln 18)^2} = 5.035300$$

$$a(4) = \langle x''(4), y''(4) \rangle = \left\langle \frac{4}{\sqrt{17}}, \frac{4}{9} \right\rangle = \langle 0.970143, 0.444444 \rangle$$

1.1	1.2	►	*bc2		RAD 📘	\times
2 {(xp(4	1)) ²	$+(yp(4))^2$				
\int	4• (lı	n(3)) ² +4·1	n(3).	$\ln(2) + (\ln(2))$	2)) ² +17	
2 (xp(4	1)) ²	$+(vp(4))^2$		5	.035300	
						~

1.1 1.2 1.3	▶ *bc2	rad 📘 🗙
$\frac{d}{dt}(xp(t)) t=4$		$\frac{4 \cdot \sqrt{17}}{17}$
$\frac{d}{dt}(xp(t)) t=4$		0.970143
$\frac{d}{dt}(yp(t)) t=4$		<u>4</u> 9
$\frac{d}{dt}(yp(t)) t=4$		0.444444

Scoring notes:

• To earn any of these points, the setup used to perform the calculation must be evident in the response. The following examples earn the first point: $\sqrt{(x'(4))^2 + (y'(4))^2} = 5.035$ or $\sqrt{17 + (12 + 12)^2}$ and $\sqrt{x''(4)} = \sqrt{4} + 4$ would ease both the second and third exists.

 $\sqrt{17 + (\ln 18)^2}$ and $\langle x''(4), y''(4) \rangle = \langle \frac{4}{\sqrt{17}}, \frac{4}{9} \rangle$ would earn both the second and third points.

There must be supporting work. (See last item.)

• The second and third points can be earned independently.

The first and the second component of the acceleration vector can be earned independently.

• If the acceleration vector is not presented as an ordered pair, the *x* - and *y* -components must be labeled.

Good communication skills are necessary.

• If the components of the acceleration vector are reversed, the response does not earn either of the last 2 points.

$$a(4) = \langle y''(4), x''(4) \rangle = \langle 0.444, 0.970 \rangle$$
? - 0

• A response which correctly calculates expressions for both $x''(t) = \frac{t}{\sqrt{1+t^2}}$ and $y''(t) = \frac{2t}{2+t^2}$, but which fails to evaluate both of these expressions at t = 4, earns only 1 of the last 2 points.

• An unsupported acceleration vector earns only 1 of the last 2 points.

 $a(4) = \langle 0.970, 0.444 \rangle$

Common Errors

- (1) Equating the speed function with the value of the function at t = 4.
- (2) Use of the notation |v| without any indication about how the quantity v was defined.
- (3) Parentheses errors that resulted in ambiguous or incorrect expressions.
- (4) Many students found the components of the acceleration vector symbolically. In this case: chain rule errors, power rule errors.
- (5) Some responses found the length of the acceleration vector.
- (6) Incorrect labels or no labels on vector components.

(c) Find the y-coordinate of the particle's position at time t = 6.

$v(6) = v(4) + \int_{0}^{6} \ln(2 + t^{2}) dt$	Integrand	1 point
$\mathbf{J}_{\mathbf{J}}_{\mathbf{J}_{\mathbf{J}}}}}}}}}}$	Uses $y(4)$	1 point
= 5 + 6.570517 = 11.570517	Answer	1 point
The <i>y</i> -coordinate of the particle's position at time $t = 6$ is 11.571 (or 11.570).		

Solution

Given: y(4) = 5, Need y(6)

$$\int_{4}^{6} y'(t) dt = y(6) - y(4) \quad \Rightarrow \quad y(6) = y(4) + \int_{4}^{6} y'(t) dt$$

y(6) = 5 + 6.570517 = 11.570517

The *y*-coordinate of the particle's position at time t = 6 is 11.571.

1.2 1.3 1.4 *bc2	rad 📘 🗙
$\int_{4}^{6.} yp(t) dt$	6.570517
6.5705170044448+5	11.570517

Scoring notes:

• For the first point, an integrand of $\ln(2 + t^2)$ can appear in either an indefinite integral or an incorrect definite integral.

We want to see the correct integrand.

• A definite integral with incorrect limits is not eligible for the answer point.

A definite integral with correct integrand and incorrect limits cannot resolve to the correct answer. Therefore, this cannot earn the answer point.

• Similarly, an indefinite integral is not eligible for the answer point.

If there are no bounds on the integral, then the response is not eligible for the third point.

• For the second point, the value for y(4) must be added to a definite integral. A response that reports the correct *x*-coordinate of the particle's position at time t = 6 as

 $x(6) = x(4) + \int_{4}^{6} \sqrt{1 + t^2} dt = 11.200$ (or 11.201) instead of the *y*-coordinate, earns 2 out of the 3 points.

• A response that earns the first point but not the second can earn the third point with an answer of 6.571 (or 6.570).

$$\int_{4}^{6} y'(t) \, dt = 6.571 \qquad \qquad 1 - 0 - 1$$

- If the differential is missing:
 - $y(6) = \int_{4}^{6} \ln(2 + t^2)$ earns the first point and is eligible for the third.
 - $y(6) = \int_{4}^{6} \ln(2+t^2) + y(4)$ does not earn the first point but is eligible for the second and third points in the presence of the correct answer.
 - $y(6) = y(4) + \int_{4}^{6} \ln(2 + t^2)$ earns the first two points and is eligible for the third.

Common Errors

- (1) Presentation of only an indefinite integral.
- (2) Failure to add the initial position y(4).
- (3) Attempts to find $\int \ln(2+t^2) dt$ using integration by parts.

(4) CAS results for $\int_4^6 \ln(2+t^2)\,dt$

1.3	1.4	1.5	•	*bc2		RAD 📋	×
$\int_{4}^{6} yp$	(t) d <i>t</i>						•
2•√2	• tan	·1(3· ,	2)-2	$2 \cdot \sqrt{2} \cdot$	tan-1(2.	$\sqrt{2}$ +2·ln•	
							~

BC2 Particle Motion

(d) Find the total distance the particle travels along the curve from time t = 4 to time t = 6.

$\int_{4}^{6} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$	Integrand	1 point
= 12.136228	Answer	1 point
The total distance the particle travels along the curve from time $t = 4$ to time $t = 6$ is 12.136.		

Solution

Distance =
$$\int_{4}^{6} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$
$$= 12.136$$

Scoring notes:

• The first point is earned for presenting the correct integrand in a definite integral.

$$\int_{\Box}^{\Box} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt$$

- To earn the second point, a response must have earned the first point and must present the value 12.136.
- An unsupported answer of 12.136 does not earn either point.

Common Errors

(1) Presentation errors: missing parentheses.

(2) Presentation of the definite integral $\int_4^6 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dt$.

(3) Presentation of the definite integral: $\int_{x}^{6} \frac{dy}{dx} dt$

Additional Questions

- (1) Find the x-coordinate of the particle's position at time t = 6.
- (2) Find the particle's initial position, that is, at time t = 0.
- (3) Find the particle's distance from the origin at time t = 6.
- (4) Find the time at which the particle is closest to the origin. What is the position of the particle at that time? What is the distance?
- (5) Find the time t_1 at which the particle crosses the *x*-axis. Find the time t_2 at which the particle crosses the *y*-axis. Find the total distance the particle travels along the curve from $t = t_1$ to $t = t_2$.

education.ti.com

