TI in Focus: AP ${ }^{\circledR}$ Calculus 2022 AP® Calculus Exam: BC2 Scoring Guidelines and Solutions

Stephen Kokoska
Professor Emeritus, Bloomsburg University Former AP ${ }^{\circledR}$ Calculus Chief Reader

Outline

(1) Free Response Question
(2) Point Distribution
(3) Solutions (using technology)
(4) Scoring Notes
(5) Common Errors
(6) Problem Extensions

Part A (BC): Graphing calculator required
 Question 2

General Scoring Notes

The model solution is presented using standard mathematical notation.

Answers (numeric or algebraic) need not be simplified. Answers given as a decimal approximation should be correct to three places after the decimal point. Within each individual free-response question, at most one point is not earned for inappropriate rounding.

A particle moving along a curve in the $x y$-plane is at position $(x(t), y(t))$ at time $t>0$. The particle moves in such a way that $\frac{d x}{d t}=\sqrt{1+t^{2}}$ and $\frac{d y}{d t}=\ln \left(2+t^{2}\right)$. At time $t=4$, the particle is at the point $(1,5)$.

Model Solution

Scoring
(a) Find the slope of the line tangent to the path of the particle at time $t=4$.

$$
\left.\frac{d y}{d x}\right|_{t=4}=\frac{y^{\prime}(4)}{x^{\prime}(4)}=\frac{\ln 18}{\sqrt{17}}=0.701018
$$

The slope of the line tangent to the path of the particle at time $t=4$ is 0.701 .

Solution

$\left.\frac{d y}{d x}\right|_{t=4}=\frac{y^{\prime}(4)}{x^{\prime}(4)}=\frac{\ln \left(2+4^{2}\right)}{\sqrt{1+4^{2}}}=\frac{\ln 18}{\sqrt{17}}=0.701$

1.1	*bc2
$x p(t):=\sqrt{1+t^{2}}$	Don $] \times$
$y p(t):=\ln \left(2+t^{2}\right)$	Done
$\frac{y p(4)}{x p(4)}$	$\frac{\ln (18) \cdot \sqrt{17}}{17}$
$\frac{y p(4)}{x p(4)} \cdot 1$.	0.701018

Scoring notes:

- To earn the point, the setup used to perform the calculation must be evident in the response. The
following examples earn the point: $\frac{y^{\prime}(4)}{x^{\prime}(4)}=0.701, \frac{\ln \left(2+4^{2}\right)}{\sqrt{1+4^{2}}}$, or $\frac{\ln 18}{\sqrt{17}}$.
- Note: A response with an incorrect equation of the form "function $=$ constant", such as $\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\ln (18)}{\sqrt{17}}$, will not earn the point. However, such a response will be eligible for any points for similar errors in subsequent parts.

Common Errors

(1) Most students recognized the need to find $\frac{y^{\prime}(4)}{x^{\prime}(4)}$.
(2) There were some communication errors, especially in equating a function to a specific value.
(3) Some students presented the reciprocal of the correct answer.
(b) Find the speed of the particle at time $t=4$, and find the acceleration vector of the particle at time $t=4$.
$\sqrt{\left(x^{\prime}(4)\right)^{2}+\left(y^{\prime}(4)\right)^{2}}=\sqrt{17+(\ln 18)^{2}}=5.035300$
Speed
1 point

The speed of the particle at time $t=4$ is 5.035 .
$a(4)=\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle=\left\langle\frac{4}{\sqrt{17}}, \frac{4}{9}\right\rangle=\langle 0.970143,0.444444\rangle$

The acceleration vector of the particle at time $t=4$ is
First component of acceleration

Second component of 1 point acceleration $\langle 0.970,0.444\rangle$.

Solution

$$
\text { Speed }=\sqrt{\left[x^{\prime}(4)\right]^{2}+\left[y^{\prime}(4)\right]^{2}}=\sqrt{17+(\ln 18)^{2}}=5.035300
$$

$$
a(4)=\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle=\left\langle\frac{4}{\sqrt{17}}, \frac{4}{9}\right\rangle=\langle 0.970143,0.444444\rangle
$$

1.1
1.2 $\sqrt[2]{(x p(4))^{2}+(y p(4))^{2}}$ $\sqrt{4 \cdot(\ln (3))^{2}+4 \cdot \ln (3) \cdot \ln (2)+(\ln (2))^{2}+17}$ $\sqrt[2]{(x p(4))^{2}+(y p(4))^{2}}$

$1.1 \quad 1.2 \quad 1.3$	${ }^{* b c 2}$
$\left.\frac{d}{d t}(x p(t)) \right\rvert\, t=4$	$\frac{4 \cdot \sqrt{17}}{17}$
$\frac{d}{d t}(x p(t))_{\mid t=4}$	0.970143
$\frac{d}{d t}(y p(t))_{\mid t=4}$	$\frac{4}{9}$
$\frac{d}{d t}(y p(t))_{\mid t=4}$	0.444444

Scoring notes:

- To earn any of these points, the setup used to perform the calculation must be evident in the response. The following examples earn the first point: $\sqrt{\left(x^{\prime}(4)\right)^{2}+\left(y^{\prime}(4)\right)^{2}}=5.035$ or $\sqrt{17+(\ln 18)^{2}}$ and $\left\langle x^{\prime \prime}(4), y^{\prime \prime}(4)\right\rangle=\left\langle\frac{4}{\sqrt{17}}, \frac{4}{9}\right\rangle$ would earn both the second and third points.

There must be supporting work. (See last item.)

- The second and third points can be earned independently.

The first and the second component of the acceleration vector can be earned independently.

- If the acceleration vector is not presented as an ordered pair, the x - and y-components must be labeled.

Good communication skills are necessary.

- If the components of the acceleration vector are reversed, the response does not earn either of the last 2 points.
$a(4)=\left\langle y^{\prime \prime}(4), x^{\prime \prime}(4)\right\rangle=\langle 0.444,0.970\rangle$
- A response which correctly calculates expressions for both $x^{\prime \prime}(t)=\frac{t}{\sqrt{1+t^{2}}}$ and $y^{\prime \prime}(t)=\frac{2 t}{2+t^{2}}$, but which fails to evaluate both of these expressions at $t=4$, earns only 1 of the last 2 points.
- An unsupported acceleration vector earns only 1 of the last 2 points.
$a(4)=\langle 0.970,0.444\rangle$

Common Errors

(1) Equating the speed function with the value of the function at $t=4$.
(2) Use of the notation $|v|$ without any indication about how the quantity v was defined.
(3) Parentheses errors that resulted in ambiguous or incorrect expressions.
(4) Many students found the components of the acceleration vector symbolically. In this case: chain rule errors, power rule errors.
(5) Some responses found the length of the acceleration vector.
(6) Incorrect labels or no labels on vector components.
(c) Find the y-coordinate of the particle's position at time $t=6$.

$y(6)=y(4)+\int_{4}^{6} \ln \left(2+t^{2}\right) d t$	Integrand	$\mathbf{1}$ point
$=5+6.570517=11.570517$	Uses $y(4)$	$\mathbf{1}$ point
	Answer	$\mathbf{1}$ point

The y-coordinate of the particle's position at time $t=6$ is 11.571 (or 11.570).

Solution

Given: $y(4)=5, \quad$ Need $y(6)$

$$
\begin{aligned}
& \int_{4}^{6} y^{\prime}(t) d t=y(6)-y(4) \Rightarrow y(6)=y(4)+\int_{4}^{6} y^{\prime}(t) d t \\
& y(6)=5+6.570517=11.570517
\end{aligned}
$$

The y-coordinate of the particle's position at time $t=6$ is 11.571 .

1.21 .31 .4	Rbc2
$\int_{4}^{6 .} y p(t) \mathrm{d} t$	6.570517
$6.5705170044448+5$	

Scoring notes:

- For the first point, an integrand of $\ln \left(2+t^{2}\right)$ can appear in either an indefinite integral or an incorrect definite integral.

We want to see the correct integrand.

- A definite integral with incorrect limits is not eligible for the answer point.

A definite integral with correct integrand and incorrect limits cannot resolve to the correct answer. Therefore, this cannot earn the answer point.

- Similarly, an indefinite integral is not eligible for the answer point.

If there are no bounds on the integral, then the response is not eligible for the third point.

- For the second point, the value for $y(4)$ must be added to a definite integral. A response that reports the correct x-coordinate of the particle's position at time $t=6$ as $x(6)=x(4)+\int_{4}^{6} \sqrt{1+t^{2}} d t=11.200$ (or 11.201) instead of the y-coordinate, earns 2 out of the 3 points.
- A response that earns the first point but not the second can earn the third point with an answer of 6.571 (or 6.570).
$\int_{4}^{6} y^{\prime}(t) d t=6.571$
- If the differential is missing:
- $y(6)=\int_{4}^{6} \ln \left(2+t^{2}\right)$ earns the first point and is eligible for the third.
- $y(6)=\int_{4}^{6} \ln \left(2+t^{2}\right)+y(4)$ does not earn the first point but is eligible for the second and third points in the presence of the correct answer.
- $y(6)=y(4)+\int_{4}^{6} \ln \left(2+t^{2}\right)$ earns the first two points and is eligible for the third.

Common Errors

(1) Presentation of only an indefinite integral.
(2) Failure to add the initial position $y(4)$.
(3) Attempts to find $\int \ln \left(2+t^{2}\right) d t$ using integration by parts.
(4) CAS results for $\int_{4}^{6} \ln \left(2+t^{2}\right) d t$

(d) Find the total distance the particle travels along the curve from time $t=4$ to time $t=6$.

$\int_{4}^{6} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$	Integrand	$\mathbf{1}$ point
$=12.136228$	Answer	$\mathbf{1}$ point

The total distance the particle travels along the curve from time $t=4$ to time $t=6$ is 12.136 .

Solution

$$
\begin{aligned}
\text { Distance } & =\int_{4}^{6} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
& =12.136
\end{aligned}
$$

Scoring notes:

- The first point is earned for presenting the correct integrand in a definite integral.
$\int_{\square}^{\square} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$
- To earn the second point, a response must have earned the first point and must present the value 12.136.
- An unsupported answer of 12.136 does not earn either point.

Common Errors

(1) Presentation errors: missing parentheses.
(2) Presentation of the definite integral $\int_{4}^{6} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d t$.
(3) Presentation of the definite integral: $\int_{4}^{6} \frac{d y}{d x} d t$

Additional Questions

(1) Find the x-coordinate of the particle's position at time $t=6$.
(2) Find the particle's initial position, that is, at time $t=0$.
(3) Find the particle's distance from the origin at time $t=6$.
(4) Find the time at which the particle is closest to the origin. What is the position of the particle at that time? What is the distance?
(5) Find the time t_{1} at which the particle crosses the x-axis. Find the time t_{2} at which the particle crosses the y-axis. Find the total distance the particle travels along the curve from $t=t_{1}$ to $t=t_{2}$.

