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6. A function f has derivatives of all orders for −1 < x < 1. The derivatives of f satisfy the conditions above.

The Maclaurin series for f converges to .

(a) Show that the first four nonzero terms of the Maclaurin series for f are , and write the 

general term of the Maclaurin series for f. 

(b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges
 
conditionally, or diverges at x = 1. Explain your reasoning.
 

(c) Write the first four nonzero terms and the general term of the Maclaurin series for g x  = ( ) t( )  f t d∫0 

x 
.

 
represent the nth-degree Taylor polynomial for g about (d) Let x = 0 evaluated at , where g is

the function defined in part (c). Use the alternating series error bound to show that 

.
 

STOP
 

END OF EXAM
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Question 6 
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(b) For 1,x   the Maclaurin series becomes 
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The series does not converge absolutely because the harmonic series 
diverges. 
 
The series alternates with terms that decrease in magnitude to 0 and 
therefore the series converges conditionally. 
 

2 : converges conditionally 
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3 : 1 : remaining terms
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(d) The terms alternate in sign and decrease in magnitude to 0. By the 
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Part (a)

Generate a sequence to find f ′′(0), f ′′′(0), and f (4)(0).

Use these values to find the first four nonzero terms of the Maclaurin series.

The general term is
(−1)n+1xn

n
.
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Part (b)

For x = 1, the Maclaurin series becomes
∞∑

n=1

(−1)n+1

n

Converges, alternating harmonic series, or AST.

∞∑
n=1

∣∣∣∣ (−1)n+1

n

∣∣∣∣ = ∞∑
n=1

1

n
Diverges, harmonic series.
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Part (b)

Some numerical confirmation.
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Example 1 Radius and Interval of Convergence

Find the radius of convergence and the interval of convergence of the Maclaurin
series

∞∑
n=1

(−1)n+1xn

n

Solution

Let an =
(−1)n+1xn

n
and consider the quotient for the Ratio Test.

∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣ (−1)n+1xn+1

n+ 1
· n

(−1)n+1xn

∣∣∣∣ Definition of nth term; division of fractions

=
n

n+ 1
|x| Simplify; property of absolute value
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Solution

Consider the limit associated with the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n

n+ 1
|x| = |x| Divide numerator and denominator by n;

evaluate limit

By the Ratio Test, the series converges if |x| < 1 and diverges if |x| > 1.

The radius of convergence is R = 1. a = 0

x = 1 :

∞∑
n=1

(−1)n+1

n
Converges, AST

x = −1 :

∞∑
n=1

(−1)n+ 1(−1)n

n
=

∞∑
n=1

(−1)2n+1

n
= (−1)

∞∑
n=1

1

n
Diverges

The interval of convergence is (−1, 1].
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Solution

Define the nth term of the series.

Consider the quotient for the Ratio Test.

Consider the limit associated with the Ratio Test.
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Part (c)

Define a function f(t) (with four terms).

Evaluate the definite integral.
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Example 2 Radius and Interval of Convergence, Part 2

Consider the function f defined by its Maclaurin series

f(x) = x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n+1xn

n

(a) Find the interval of convergence for

∫
f(x) dx

(b) Find f ′(x) and find the interval of convergence for f ′(x).
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Note:

If the power series
∞∑

n=0

cn(x− a)n has a radius of convergence R > 0, then the

function f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑

n=0

cn(x− a)n

is differentiable on the interval (a−R, a+R).

What is the radius of convergence for f ′(x) and

∫
f(x) dx?

What is the interval of convergence for f ′(x) and

∫
f(x) dx?
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Part (d)

Define the nth term of the series.

Find the magnitude (absolute value) of the first unused term.
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Example 3 An Examination of Errors

Consider the function f defined by its Maclaurin series

f(x) = x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n+1xn

n

(a) Use the Maclaurin series to approximate f(0.5) to six decimal places.

(b) Find a closed form expression for f(x).

(c) Let T4(x) = x− x2

2
+

x3

3
− x4

4
. Use your expression found in part (b) to

sketch a graph of the remainder, |R4(x)| = |f(x)− T4(x)| on the interval
[−0.5, 0.5] and justify the general shape of this graph.
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