
J. Hanna ©2022

Do Python Modules Really Have More Fun? (TI-Nspire™ CX II)

Still John Hanna

Since Python programming was first released to the world on the TI-84 Plus CE Python and the TI-Nspire
CX II about a year ago, I think it’s time to dig a little deeper into the power of modular programming on
these remarkable platforms. And discover why using Modules can be more fun, or can certainly at least
save you some time.

Modules give me a powerful way to re-
use common code. These custom
support’ files are easily shared among
my many Python programs and can be
shared with others.

Modular programming is also useful if
you or your students want to work in
teams: assign each member of the
team a clearly defined task, have each
develop a module, and merge the
modules into a single TI-Nspire
document.

NEW: Python Modules Library on TI Codes

The developers at TI have included some special files in the PyLib folder: the modules
beginning with ti_*. If you download and install the very cool turtle module, it is
installed into the PyLib folder as well. In fact, all Python files contained in the PyLib
folder are available on the [menu] > More Modules list.

The developers are busy creating other new modules to tap more of the potential of
TI-Nspire through Python. For some practice with the TI modules see the additional
[+] Python Modules section of TI Codes for Python TI-Nspire at
https://education.ti.com/en/activities/ti-codes/python/ti-nspire-cx-ii.

Where are my files?
When I create a new TI-Nspire file using the TI-Nspire Python Editor, my *.py file resides within the
document I’m working on (duh). But, unlike TI-Nspire ‘core’ variables that are created in the other Apps
such as the Calculator, Lists & Spreadsheet, or even the TI-Basic Program Editor, the Python files are not
restricted to just the current Problem, but are accessible in all Problems within the document. And
those Python files can ‘communicate’ with each other.

https://education.ti.com/en/product-resources/turtle-module/nspire-python
https://education.ti.com/en/activities/ti-codes/python/ti-nspire-cx-ii
https://education.ti.com/en/activities/ti-codes/python/ti-nspire-cx-ii

J. Hanna ©2022

What’s a module?
I like to make a distinction between a Python program (also called a script) and a module. Both a
program and a module are written using the same Python language but differ slightly in their purpose: a
program is executable code that accomplishes an end goal: it should do something. A module is also a
Python file, but it’s end goal is support: it is designed to be imported into a program (or another
module), like the math and random modules. A module is designed to make common routines
‘portable’ and ‘reusable’ and can contain any Python code, functions, and even class definitions.

Import this!
When I use an import statement in my program, I am invoking another Python file: a module. There are
several modules included in the TI-Nspire Python system: some are standard MicroPython modules
(math, random, time) and others are special TI-developed modules (ti_system, ti_hub, etc.).

There are three ‘flavors’ of import statements:

- import math - all functions must be preceded by the module name: y = math.sin(x)
- import math as hoi – all functions must be preceded by the ‘alias’ name you chose: y = hoi.sin(x)
- from math import * - all functions can be used without the module prefix: y = sin(x)

And, if you only intend to use one or two of the functions in a module you can just state which one(s) to
import to conserve memory:

- from random import randint, uniform (no parentheses after the function names)

Writing a Module
The draw_arc() function in the ti_draw module can be tricky to use so I opted to create a custom arc()
function to make it easier to position the arc…
In a single TI-Nspire document (*.TNS), I can have several Python files (*.py). For illustration purposes I
set up a split screen page (below left) to show a complete program on the left side and the support
module on the right side:

 program module output of program

The two Python files are:

- better_arc.py is a complete program (script) that imports the my_arc.py file and so has access
to the arc(…) function. The program draws a complete ellipse centered at (0,0) with an x-radius
of 5 and a y-radius of 3. The arguments 0, 360 ensure that the complete ellipse is drawn.

J. Hanna ©2022

- my_arc.py (the module) contains just one function definition: arc(…) that draws an elliptical arc
using the center, x- and y-radii, start_angle and arc_angle. It must be stored (using ctrl-B or ctrl-
R) before it can be used. There should not be an asterisk (*) before the .py filename at the top
as seen above. (Note: if you press ctrl-R in this file or import it into a Shell, nothing happens. But
then press [var] and you will see the function arc(). You can use this function in the Shell but
must provide values for the six arguments.)

Did you notice that both Python files above import the ti_draw module? Python is designed to avoid
duplication of functions and will not import those draw functions more than once. Whew.

Python modules can have lots of functions (and classes, too, but I’ll save that topic for another post).
PyLib
A special folder in the TI-Nspire file system, PyLib is a place to store our Python modules so that they can
be imported into any Python file in any TI-Nspire document on the device. If Python cannot locate an
imported module within the current document (in any Problem), it then checks the PyLib folder to see if
the module is located there. If not, then an error message is presented.

Thinking about that arc() project from above: I create two separate *.tns files, one containing the
program and another containing the module. The *.tns file containing the module (my_arc.py) is stored
in the Pylib folder. Then any other python program in any other *.tns file can import the my_arc module
to use that cool arc(…) function:

 program: note the import module in PyLib
 note that TNS filename does not matter!

 The output of arc_demo2.py:

Note that arc_demo2.py file above does not import ti_draw and
that my_arc.py only imports the draw_arc function from
ti_draw. So all other ti_draw functions, like set_window() are
not available in either file. This program is thus using the default
canvas: (0, 0)(317, 211).

Note that Python does not care about *.tns filenames, only the *.py files stored within them.

J. Hanna ©2022

My Own Pylib Folder
As you add modules to your PyLib folder they will appear on [menu] > More Modules in alphabetical
order. Note that the *.py files in the documents are listed, not the TI-Nspire documents

To the right is the current list of my ‘More Modules’ (snip taken from my
computer screen). Above the separator bar are two standard modules and
some TI-provided modules (1..5) that include robust sub-menus.

Below the separator bar are my own additional modules. Most of these sub-
menus only contain an import statement but they are all in ‘openable’ TNS
files so that I can read the documentation within the file (and the source
code, too).

But there are (so far) three special modules on this list developed by TI that
do contain submenus: the BBC micro:bit, Tello, and Turtle Graphics modules
have menus from which to choose functions. The TI developers are really
smart.

When developing a module to include in my PyLib folder, I usually give the
TNS file the same name as the lone Python file contained within. This makes
it easier to locate when I decide to open the file to read the docs or to edit
the module. This was not the case with the my_arc module on purpose. But
both colorpicker (a script) and colortable (a module) are in the same TNS
document (for good reason, eh).

So, yes, a TNS file saved in the PyLib folder can contain many Python files
and they will all appear separately on this list.

Python Tip: to see what functions are defined in a module: in any Shell,
import the module then issue the command sorted(dir()):

I get a listing of the function names only, but this is a start.
Remember that Python is Case Sensitive, so
randint() is different than randInt()

J. Hanna ©2022

My Favorite Module
Being a graphics fan, my favorite homemade module in my Pylib is colortable. This module contains a
list of 360 colors of the rainbow. The list name is Jcolors[] and the index is in the range 0..359. Here’s a
sample of random circles made with plain, dull random colors and another made with vibrant random
Jcolors:

 r, g, b=randint(0, 255), randint(0, 255), from colortable import *
 randint(0, 255)
 set_color(r, g, b) set_color(Jcolors[randint(0, 359)])

And here’s a screenshot of the 360 colors:

from ti_draw import *
from colortable import *
for i in range(360):
 set_pen(1, 0)
 set_color(Jcolors[i])
 draw_line(1.5*i, -1, -1, 1.46*i)

Summary
Python modules give me a powerful way to re-use common code. These modules or ‘support’ files are
easily shared among my many Python programs and can be shared with others. I’m looking forward to
your contributions to the TI-Nspire Python community. And special thanks to the developers at Texas
Instruments for creating additional powerful tools for a rich and engaging Python experience.

