

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 1 of 18

Install the Turtle Module

1) Transfer the Turtle module “tns” file to your TI-

Nspire CX II family calculator(s)

After downloading the Zip and extracting files:

• Open your TI-Nspire CX desktop doftware

• Connect your TI-Nspire CX II calculator(s) to your

computer using the computer-to-calculator USB

cable that comes with the calculator.

• Verify that your connected calculator appears in the

Connected Handheld window on the Content

Explorer tab of the desktop software.

• Transfer the Turtle “tns” file to the connected

calculator by dragging the file into the Connected

Handheld window.

• After opening the file on your calculator, go to step

3) Install the Turtle Module

This step requires use of TI-Nspire CX desktop software for

PC or Mac

Alternately,

• use the free browser-based TI-Nspire CX II

Connect app (https://nspireconnect.ti.com/) to

transfer the Turtle “tns” file to a TI-Nspire CX II that

is connected to the computer with the computer-to-

calculator USB cable.

Note: the Turtle “tns” file may also be transferred

calculator-to-calculator via unit-to-unit USB cable

linking process prior to installation.

• Go to step 3) Install the Turtle Module

This is an online utility that works with Chromebooks

2) Transfer the Turtle module “tns” file to your

desktop software (PC or Mac)

After downloading the Zip and extracting files:

• Drag and drop the Turtle “tns” file onto your TI-

Nspire CX desktop software.

• After the file opens, go to step 3) Install the Turtle

Module

https://nspireconnect.ti.com/

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 2 of 18

3) Install the Turtle module

These steps install the module on the handheld

calculator. These same steps are also used to install

the module on the desktop software.

• Open the Turtle file and read instructions on page

1.1

• Press [ctrl] + [] to switch to the Python Shell on

page 1.2.

• Press [menu] and select Tools > Install as

Python module

• Once installed, a message “Installation completed”

will appear, cofirming istallation.

Note: when installed, the Turtle module file is moved to

the Pylib folder.

4) Accessing the Turtle module menu selections

After the Turtle module completes installation, you must

create a New document in order to write a Turtle

program.

• From the home screen, select New

• Select Add Python, New…

• Give the Python program a name (example:

square), OK

At this point you are in a Python program Editor

page.

• Press the [menu] key then select More Modules >

Turtle Graphics

At this point you are ready to begin writing a Python

program using Turtle module selections.

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 3 of 18

Creating Your First Turtle Program: Let’s draw a Square

Continuing from the module menu selections above (while

in an Editor page)

1) Select from turtle import *

Pressing [enter] will paste the import statement and

constructor t=Turtle() as the first line in your program.

This imports the Turtle module functions and methods

into your program and defines your turtle as an object

named “t”.

Note: All successive menu selections assume a turtle

object named “t”. Changing the object name will also

require changing the pasted syntax.

2) Press enter once or twice to advance to line 3.

Note: line numbers are shown in the top-right corner of

the page.

3) Press [menu] and select Built-ins, Control, and from

index in range(size):

Notice the in-line prompt which highlights the word

“index”. Pressing Tab will cycle through the in-line

prompts.

4) Enter “sides” for the index and “4” for size

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 4 of 18

5) With the cursor on the in-line prompt “block”, press

[menu] and select More Modules, Turtle Graphics,

Move, then the t.forward(distance) selection

6) Enter the distance you want the turtle to travel forward.

In this example, let’s enter 75 units

Note: The distance unit is measured in pixels. By

default, the grid scale is set to 25 pixels wide per grid

square.

7) Jump to the end of the line by pressing [tab], then

press [enter] for a new line.

Alternately, press [ctrl]+[enter] for a new line

8) Press [menu] and select More Modules, Turtle

Graphics, Move, then the t.left(angle) selection

Notice the “tool tip” which offers the hint “degrees”

9) Enter the angle in degrees you want the turtle to turn

left. For a square, we will enter 90 degrees

Jump to the end of the line by pressing [tab].

You are ready to run your first Turtle program!

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 5 of 18

10) To run the program press [menu] then select Run,

Run (Ctrl+R)

Notice the shortcut hint Ctrl+R in the menu selection.

In the future you can simply use the shortcut Ctrl+R to

run your program.

By default, the turtle is visible and you see it draw.

When you finish admiring your work, press [esc] to

clear the screen. You will be on page 1.2, a Python

Shell. Press [ctrl]+[] to return to the Editor page 1.1.

From there, modify your program and run it again.

Notice the scale in the bottom-left corner

Challenges:

• Change the pen thinckness

• Change the pen color

• Hide the turtle icon

• Change the speed at which the turtle moves

• Hide the grid and scale indicator

• Fill the square

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 6 of 18

Turtle Module Methods

Every effort has been made to align with syntax and associated

behaviors of the Python API (Application Programming

Interface) for Turtle Graphics found on the Python

documentation website. While there may be slight behaviorial

and syntax differences in implementation, please visit this site

to familiarize with syntax definitions and turtle behaviors.

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Please see the Default Settings and Known Exceptions section

for an overview of notes and known exceptions.

Module menu selections

• from turtle import *

• Move

• Draw

• Pen Control

• Settings

• Tell Turtle’s state

• Colors

• Filling

Move

• t.forward(distance)

• t.backward(distance)

• t.right(angle)

• t.left(angle)

• t.goto(x,y)

• t.setheading(angle)

• t.home()

• t.clear()

• t.reset()

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 7 of 18

Draw

• t.circle(radius)

• t.dot(radius)

• t.stamp()

• t.write(“text”)

Pen control

• t.pencolor(color)

• t.penup()

• t.pendown()

• t.pensize(1,2,or3)

Settings

• t.degrees()

• t.radians()

• t.speed(0-10)

• t.showturtle()

• t.hideturtle()

• t.setgrid(10-100)

• t.hidescale()

• t.hidegrid()

• version()

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 8 of 18

Tell Turtle’s state

• var=t.position()

• var=t.heading()

• var=t.xcor()

• var=t.ycor()

• var=t.towards(x,y)

• var=t.distance(x,y)

• var=t.isdown()

Colors

• red

• green

• blue

• yellow

• cyan

• magenta

• gray

• black

• white

Filling

• t.fillcolor(color)

• t.begin_fill()

• t.end_fill()

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 9 of 18

Default Settings and Exceptions

When these methods are not specified programatically, the following defaults are applied

Turtle Default on. Use t.hideturtle() to hide the turtle icon.

When the turtle icon is visible

• Pen size is fixed at 1 and cannot be changed even if a different pensize() is specified in

the program

• Speed can be adjusted only with arguments 1 through 10

• Use of speed(0) will automatically hide the turtle icon

• The turtle icon may increasingly slow down when executing long or complex programs.

In these instances it is best to apply t.hideturtle().

Grid Default on. Use t.hidegrid() to hide the grid.

Scale Default 25 pixels.

Use t.setgrid() to change the scale of the grid. Valid arguments are 10 to 100.

Use t.hidescale() to hide the scale indiicator.

Speed Defaults setting is t.speed(5)

Use t.speed() to change the speed. Valid arguments are 0 to 10.

While values 1 through 10 range from slow to fast, speed(0) is the fastest (per the Turtle

Graphics API).

Pen Default pen size is 1. To adjust the pen size, use t.pensize() with valid arguments 1, 2, and 3.

Note: Pen size is always 1 when turtle is visible.

Default pen color is black. Use t.pencolor(color) to change pen color. RGB (Red, Green, Blue)

values are valid arguments for pen color with values in the range of 0 through 255. Alternately,

populate the t.pencolor(color) argument with selections from the Color menu.

Default pen down. To move the turtle to a location without drawing a line, use the penup()

method. The pendow() method will subsequently need to be applied to continue drawing.

Fill Default color is black. Use t.fillcolor(color) to specify other colors. RGB (Red, Green, Blue) values

are valid arguments for fill color with values in the range of 0 through 255. Alternately, populate

the t.fillcolor(color) argument with selections from the Color menu.

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 10 of 18

Example Programs:

Example 1: My First Star

Draw a single star. The star is drawn with a random line color

and filled with a random color.

Notice that t.pencolor() can be defined with R,G,B values (Red,

Green, Blue), with values in the range of 0 to 255.

from turtle import *; t=Turtle()

from random import randint

t.speed(10)

t.penup()

t.goto(-80,14)

t.pendown()

t.pencolor(randint(0,255),randint(0,255),randint(0,255))

t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

t.begin_fill()

while True:

 t.forward(160)

 t.right(160)

 if t.heading() < 1:

 break

t.end_fill()

Note: The “break” function is currently not in a menu selection

and needs to be hand-typed. “True” is found under [menu],

Built-ins, Ops.

Challenges:

• Change the t.right() angle to create stars of

different shapes. What happns when the angle is

small. Large.

• Change the t.forward() distance for smaller and

larger stars.

Example file name: random_stars.tns

Program name: MyFirstStar.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 11 of 18

Example 2: PhiX 177 Super Nova

Build on the prior program by automatically re-generating a new

star every second until you press [esc]

from turtle import *; t=Turtle()

from time import sleep

from random import randint

t.speed(10)

t.hideturtle()

t.pensize(2)

while get_key() != "esc":

 t.penup()

 t.goto(-80,14)

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 while True:

 t.forward(160)

 t.right(160)

 if t.heading() < 1:

 break

 t.end_fill()

 sleep(1)

Example file name: random_stars.tns

Program name: PhiX177SuperNova.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 12 of 18

Example 3: Zinnias in the Summer

Build on the prior programs and randomize the position of stars

on the screen.

from turtle import *; t=Turtle()

from time import *

from random import randint, uniform

t.speed(0)

t.hideturtle()

t.pensize(1)

while get_key() != "esc":

 t.penup()

 t.goto(randint(-200,120), randint(-100,100))

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 while True:

 t.forward(80)

 t.left(162)

 if t.heading() < 1:

 break

 t.end_fill()

 sleep(uniform(.1,.4))

Challenges:

• Instead of stars, draw circles, squares or

rectangles

o Randomize the size of the circles

o Randomize the size of the squares

o Randomize the height and width of the

rectangles

• Adjust the pen and fill colors so they are shade

variations of the same color

Example file name: random_stars.tns

Program name: ZinniasInSummer.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 13 of 18

Example 4: Grandma’s Quilt

Builds on the prior programs but lays the stars out in an orderly

“quilt” pattern.

from turtle import *; t=Turtle()

from random import randint

t.speed(10)

t.hidegrid()

t.hideturtle()

t.pensize(1)

for j in range(112,-150,-84):

 for i in range(-169,170,86):

 t.penup()

 t.goto(i, j)

 t.pendown()

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 while True:

 t.forward(80)

 t.left(140)

 if t.heading() < 1:

 break

 t.end_fill()

Challenges:

• Adjust the quilt pattern so that stars overlap

vertically and horizontally.

• Change the number of points on the star.

• Draw circles or squares instead of stars.

Example file name: random_stars.tns

Program name: GrandmasQuilt.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 14 of 18

Example 5: Stained Glass

Build a series of squares inside of squares.

from turtle import *; t=Turtle()

from random import randint

from math import sqrt

from ti_system import *

from time import sleep

t.pensize(2)

t.hideturtle()

t.speed(10)

while get_key() != "esc":

 n=200

 t.penup()

 t.goto(-n/2,-n/2)

 t.pendown()

 t.setheading(0)

 for i in range(10):

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 for j in range(4):

 t.forward(n)

 t.left(90)

 t.end_fill()

 t.forward(n/2)

 t.left(45)

 n=sqrt((n**2)+(n**2))/2

 sleep(.5)

Challenges:

• Decrease or increase the number of squares

drawn.

• Change the orientation angle of squares that are

draw.

• Create a “tile floor” with smaller tiles that look

like the original.

Example file name: squareloop.tns

Program name: StainedGlass.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 15 of 18

Example 6: Centroid

Build a triangle, midpoints, median

segments and centroid.

from turtle import *; t=Turtle()

calculate the midpoint of line

segment

def midpoint(pt1,pt2):

 return ((pt1[0] + pt2[0])/2, (pt1[1] +

pt2[1])/2)

plot point

def plot_point(pt):

 t.penup()

 t.goto(pt)

 t.pendown()

 t.dot(3)

the triangle verticies

v1 = (25,75)

v2 = (-125,-75)

v3 = (100,-50)

calculate the centroid centroid

=((v1[0]+v2[0]+v3[0])/3,(v1[1]+v2[1]+v3

[1])/3)

calculate the midpoints

mid_1_2 = midpoint(v1,v2)

mid_2_3 = midpoint(v2,v3)

mid_1_3 = midpoint(v1,v3)

draw the triangle in black

t.penup()

t.goto(v1)

t.pendown()

t.goto(v2)

t.goto(v3)

t.goto(v1)

draw the three median segments in

green

t.pencolor("green")

t.penup()

t.goto(mid_1_2)

t.pendown()

t.goto(v3)

t.penup()

t.goto(mid_2_3)

t.pendown()

t.goto(v1)

t.penup()

t.goto(mid_1_3)

t.pendown()

t.goto(v2)

draw the centroid in red

t.pencolor("red")

plot_point(centroid)

draw the midpoints in blue

t.pencolor("blue")

plot_point(mid_1_2)

plot_point(mid_2_3)

plot_point(mid_1_3)

Challenges:

• Change the coordinates of one or

more vertex and observe the

result.

Example file name: Centroid.tns

Program name: tri_centroid.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 16 of 18

Example 7: RhombuStar1

This deploys a familiar loop strtategy but draws a rhombus that

is rotated around the origin. It continues to regenerate every

second until you press [esc].

From turtle import *; t=Turtle()

from time import sleep

from random import randint

t.speed(10)

t.hideturtle()

t.pensize(2)

while get_key() != “esc”:

 t.pencolor(randint(0,255),randint(0,255),randint(0,255))

 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))

 t.begin_fill()

 for I in range(10):

 for j in range (2):

 t.forward(50)

 t.right(60)

 t.forward(50)

 t.right(120)

 t.right(36)

 t.end_fill()

 sleep(1)

Challenges:

• Rotate a square instead of a rhombus.

• Rotate a circle instead of a rhombus.

• Change the number of rhombus, squares or

circles that are rotated around the origin.

Example file name: geo_stars.tns

Program name: RhombuStar1.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 17 of 18

Example 8: Threadbare

Deploy a familiar loop strtategy and draw a random array of

rectangles. It continues until you press [esc].

from turtle import *; t=Turtle()

from ti_system import *

from random import randint

t.hidegrid()

t.speed(10)

t.hideturtle()

t.pensize(1)

while get_key() != "esc":

 t.penup()

 t.goto(randint(-200,150), randint(-120,100))

 t.pendown()

 t.pencolor(randint(0,255), randint(0,255), randint(0,255))

 b=randint(5,60)

 h=randint(5,60)

 for i in range(2):

 t.forward(b)

 t.left(90)

 t.forward(h)

 t.left(90)

Challenges:

• Fill the rectangles.

• Make squares instead of rectangles.

Example file name: random_rectangles.tns

Program name: Threadbare1.py

Program name: Threadbare3.py

Turtle Module

Getting Started Guide

TI-Nspire CX II family products

© Texas Instruments 2021 Page 18 of 18

Example 9: Buffon's Needle

Simulate Buffon’s needle experiment.

from ti_system import *

from random import *

use shell before entering turtle

environment

clear_history()

length=int(input("Length of needle or

[enter] for 50 ?") or '50')

spacing=int(input("Spacing among

lines or [enter] for 50 ?") or '50')

needles=int(input("How many needles

or [enter] for 1000 ?") or '1000')

the_pies=[]

the_count=[]

set up turtle environment

from turtle import *; t=Turtle()

t.hidegrid()

t.speed(0)

w,h=get_screen_dim()

the_lines=[] # list of all x-coordinate of

all lines

n_lines=int((w/spacing)/2)+2 # number

of lines

crossing = 0 # needles crossing a line

estimate = 0 # calculated estimate of

pi

draw all of the lines and append

the_lines

for x in range(-

n_lines*spacing,(n_lines+1)*spacing,s

pacing):

 the_lines.append(x)

 t.penup()

 t.goto(x,-h/2)

 t.pendown()

 t.goto(x,h/2)

draw the needles

for i in range(needles):

 x1=randint(0,w)-w//2

 y1=randint(0,h)-h//2

 angle=random()*360

 t.penup()

 t.goto(x1,y1)

 t.setheading(angle)

 t.forward(length)

 x2= t.xcor()

 y2= t.ycor()

 t.pencolor("red")

check if needle touches or crosses a

line

 for n in range(len(the_lines)):

 if((x1<=the_lines[n] and

x2>=the_lines[n]) or (x2<=the_lines[n]

and x1>=the_lines[n])):

 t.pencolor("green")

 crossing+=1

 t.pendown()

 t.goto(x1,y1)

Buffon's formula

 try:

 estimate =(

2*length*i)/(crossing*spacing)

 except:

all fun and games until somone

divides by zero

 pass

 the_pies.append(estimate)

 the_count.append(i)

store_list("n",the_count)

store_list("pie",the_pies)

error=(pi-estimate)*100/pi

print("Estimate of Pi = ",

estimate,"\nError = ",error,"%")

Challenges:

• Run the simulation specifying

different needle lengths and

spacing between lines.

Example file: buffon's needle.tns

Program name: buffon.py

