Unidade 7: Utilização da biblioteca Matemática Complexa

Nesta terceira lição da unidade 7, vai utilizar a biblioteca cmath (Matemática complexa) associada à biblioteca TI PlotLib para efetuar representações de números complexos.

Lição 3: Representar números complexos

Objetivos:

- Descobrir a biblioteca cmath.
- Utilizar as funcionalidades da biblioteca cmath.
- Representar geometricamente números complexos.

Escrita complexa de uma transformação geométrica.

Uma transformação F faz corresponder a cada ponto M a sua imagem M'. Os pontos M e M' consideram-se como afixos de números complexos, respetivamente z e z'.

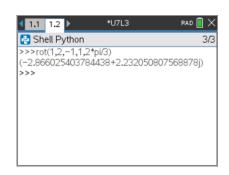
A escrita complexa da transformação F é: z' = f(z), ou seja, f é a função de $\mathbb{C} \to \mathbb{C}$ que a z associa z'.

A escrita complexa de uma rotação de centro C, afixo de ω , e ângulo θ é:

$$z' = e^{i\theta}(z - \omega) + \omega$$

Determinar o afixo de z_B , imagem do ponto A, afixo de $z_A=1+2j$, pela rotação de ângulo $\frac{2\pi}{3}$ e centro no afixo de $\omega=-1+j$.

- Iniciar uma nova aplicação, escolhendo A: Adicione Python.
- Criar um novo programa com o nome U7L3
- Na tecla menu menu escolher a 9: Mais módulos, e depois
 1 Matemática complexa.
- Inserir as bibliotecas math e cmath



Vai criar uma função com 3 argumentos e que permite obter o afixo de z_B = c + dj, imagem de um ponto A, afixo de z_A = a + bj, por uma rotação de ângulo θ em torno de C, afixo de ω.

- Executar o programa.
- Verificar que o afixo de z_B é:

$$z_B = \frac{-4-\sqrt{3}}{2} + \frac{1+2\sqrt{3}}{2} \times j$$

*U7L3

1.1 1.2 ▶*U7L3.py

from math import * def grafico(a,b,c,d,e,f):

> plt.window(-3,5,-4,4) plt.grid(1,1,"dashed")

plt.color(255,0,0)

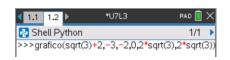
plt.plot(x,y,"x") plt.show_plot()

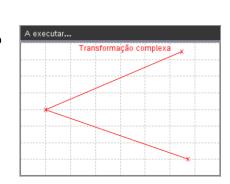
plt.title("Transformação complexa")

x=[a,c,e] y=[b,d,f] plt.cls()

Transformação complexa e representação gráfica.

Agora vai utilizar rentabilizar a função anterior para mostrar que um triângulo é equilátero.


Sejam A(a,b), B(c,d), C(e,f) os afixos, respetivamente, de: $za=\sqrt{3}+2-3j$; zb=-2 e $zc=2\sqrt{3}+2j\sqrt{3}$.


- Modificar o programa para que efetue a representação gráfica. Para tal, crie duas listas x e y contendo respetivamente as partes reais e os coeficientes das partes imaginárias dos complexos za, zb e zc.
- Representar graficamente os 3 pontos (nuvem de pontos).
- Utilizar a função **rot()** para mostrar, por exemplo, que o ponto A é imagem de C pela rotação r de centro B e ângulo $-\frac{\pi}{3}$.
- A escrita complexa de r é portanto $z' = e^{-j\frac{\pi}{3}}(z-b) + b$

Donde
$$c'=\left(\frac{1}{2}-\frac{\sqrt{3}}{2}j\right)\left(2\sqrt{3}+2j\sqrt{3}+2\right)-2$$
, ou seja, $c'=\sqrt{3}+1+\sqrt{3}j-3j-j\sqrt{3}+3-2$. Logo $c'=\sqrt{3}+2-3j$.

A é imagem de C por r, que dá BC = BA e $(\overrightarrow{BC}; \overrightarrow{BA}) = -\frac{\pi}{3} [2\pi]$.

- Executar o programa
- Utilizar a função **rot()** para calcular o afixo C, imagem de A pela rotação de centro $\omega = zb$ e ângulo $-\frac{\pi}{3}$.

NOTA:

Deve chamar a biblioteca TI PlotLib na edição do programa.

@0