UNIDADE 7: LIÇÃO 2
NOTAS PARA O PROFESSOR

Lição 2: Cálculos e representações

Nesta segunda lição da Unidade 7, aprenderá a utilizar a biblioteca **cmath (Matemática complexa)** para efetuar cálculos simples com números complexos.

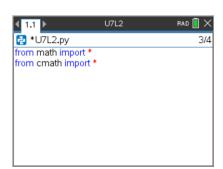
Unidade 7: Utilização da biblioteca Matemática Complexa

Objetivos:

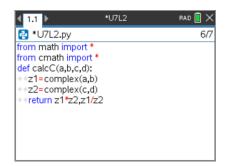
- Utilizar a biblioteca cmath.
- Realizar cálculos com números complexos.
- Representar graficamente números complexos

1. Alguns cálculos simples.

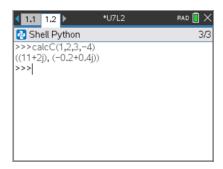
- Iniciar um novo programa com o nome U7L2.
- Inserir uma nova aplicação, escolhendo no menu A: Adicionar Python.
- Com a tecla menu aceder a 9: Mais módulos e depois
 1: Matemática complexa.
- Importar também a biblioteca de funções matemáticas.



- Criar uma função calcC(a,b,c,d) tendo como argumentos as partes reais e imaginárias dos números complexos: z1 = a + bj e z2 = c + dj
- Usar esta função para obter o produto e o quociente dos dois números complexos, ou seja, $z1 \times z2$ e $\frac{z1}{z2}$.



Testar a função com dois números complexos à sua escolha.



2. As diferentes formas de um número complexo.

Criará agora uma função que permita trabalhar de forma mais simples com números complexos usando formas trigonométricas ou exponenciais.

a) Forma trigonométrica e exponencial.

Escrever uma função para obter o módulo e o argumento de um número complexo (radianos e graus) para poder escrever na forma

$$z = \rho \times (\cos\theta + j\sin\theta)$$
 e depois $z = \rho \times e^{j\theta}$.

SUGESTÃO:

O módulo e o argumento de um número complexo também se podem determinar utilizando as instruções **abs()** e **phase()** da biblioteca **cmath**.

Estudo de um exemplo:

Considere o número complexo $z = 4\sqrt{3} + 4j$

Determinar o módulo e um argumento deste número complexo (mod 2π).

Dar a expressão na forma trigonométrica e depois exponencial.

A função permite rapidamente verificar que o número complexo tem módulo $\rho=8$ e argumento $\theta=30^\circ$, ou $\frac{\pi}{\epsilon}$ mod 2π .

A forma exponencial será $z = 8 \times e^{j\frac{\pi}{6}}$.

*U7L2 RAD (1) X Shell Python 3/3 >>>trigo(4*sqrt(3),4) (8.0, 30.0) >>>

b) Interesse das formas trigonométricas e exponenciais.

Use as duas funções anteriores (ou crie outra que utilize as duas), para verificar que para dois números complexos:

- O módulo do produto é o produto dos módulos e o argumento do produto é a soma dos argumentos.
- O módulo do quociente é o quociente dos módulos e o argumento do quociente é a diferença dos argumentos.

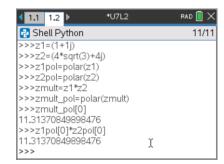
Pode-se também trabalhar diretamente no interpretador (Shell).

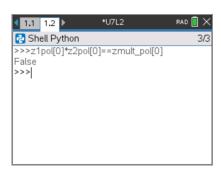
Estudo de um exemplo:

Considere os dois seguintes números complexo na forma algébrica:

$$z1 = 1 + 1i$$
 e $z2 = 4\sqrt{3} + 4i$

De seguida use os operadores lógicos, mas tenha cuidado!





3. Representar graficamente um número complexo.

Represente num plano os números complexos anteriores:

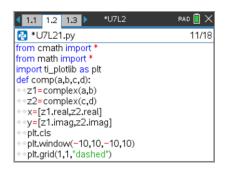
$$z1 = 1 + 1j$$
 e $z2 = 4\sqrt{3} + 4j$

Para tal, deve:

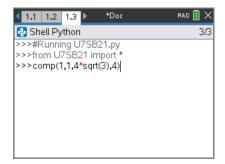
- Extrair as partes reais e imaginárias dos números complexos.
- Guardá-los em duas listas x[] e y[].
- Representar graficamente estas listas como nuvem de pontos.

Inserir um novo programa com o nome U7L21.

Criar uma função para representar graficamente dois números complexos. Esta função pode parecer artificial para representar os afixos de dois complexos z. No entanto, é um primeiro passo para a lição seguinte (Lição 3), na qual poderá resolver uma equação complexa.



- Executar o programa.
- Solicitar a representação gráfica dos números complexos propostos.



 Se desejar, pode modificar a representação gráfica para evidenciar o módulo e o argumento (importar eventualmente da biblioteca TI PlotLib).

