[image: TI Logo] Computer Science with Python	 CONDITIONAL STATEMENTS
 TI-NSPIRE™ CX II TECHNOLOGY		STUDENT DOCUMENT – ACTIVITY 5
	Conditional Statements
	

	In this project you will “branch” out into the world of conditional statements. You will start out by learning the relational and logical operators and use these operators to write statements. By the end of activity 2 you will be writing Python programs that require conditional statements to make decisions about how you will branch out through your programs.
	Objectives:

	
	Programming Objectives:
· Learn and apply Relational and Logical operators
· Write programs using Conditional statements

	Key AP Computer Science Principles Standards:
· Represent a value with a variable (AAP-1.A)
· Write expressions using relational operators (AAP-2.E)
· Evaluate expressions that use relational operators (AAP-2.E)
· Write expression using logical operators (AAP-2.F)
· Write iteration statements (AAP-2.K 2.B)
	
· Evaluate expressions that use logical operators. (AAP-2.F)
· Write Conditional statements (AAP-2.H)
· Determine the result of conditional statements (AAP-2.H)
· Express an algorithm that uses selection when using a programming language. (AAP-2.G)

	

	This document contains a variety of Selection Structure activities.
 Activity 5: Conditional statements and the TI Rover
 Students will learn basic Rover Drive commands.
 Students will modify code from Activity 5 to have the Rover drive a variety of paths .
 Students will use conditional statements to write a program to simulate a backup camera.

	Activity 5: Conditional Statements and the TI Rover

	
In this activity you will learn some of the TI Rover commands and use conditional statements to control the Rover.

	Tech Tip: Setting up your Rover.

If your Rover already has the Innovator hub connected and ready to go, all you need to do is connect your calculator to the Rover.

Pull up on the Calculator Holder Pegs and turn to open. Place your TI-84 Plus CE graphing calculator or TI-Nspire™ CX handheld on Rover. Connect the B end of the USB unit-to-unit cable into the DATA port of the Hub. Plug the A end into the USB port of your calculator. Make sure the Rover is fully charged and turned on before you run your programs. It is a good idea to turn the Rover off while programming and simply turn it on when it is time to run.

If you need to completely set up your Rover, you should visit the Texas Instruments Website for a complete set of instructions at the link below.

https://education.ti.com/en/product-resources/getting-started-with-rover#

1. Create a new TNS document and add a Python program, call it roverWalkthrough1. Since you are going to control the TI Rover you will need to import the TI Rover, just as you did the Innovator Hub before.

Menu > TI Rover > import ti_rover as rv

	Item
	Description

	import ti_rover as rv
	Imports all methods (functions) from the ti_rover module in the "rv" namespace. As a result, all function names pasted from the menus will be preceded by "rv.".

You will notice when you go to the TI Rover menu there are lots of other menus, commands and functions. In this Walkthrough you will experiment with a few of the commands from a variety of menus.

Menu > TI Rover > Drive
	Item
	Description

	forward(distance)
	Moves Rover forward the specified distance in grid units.

	backward(distance)
	Moves Rover backward the specified distance in grid units

	left(angle_degrees)
	Turns Rover left the specified angle in degrees. (If no angle value is provided, 90 degrees will be the default.)

	right(angle_degrees)
	Turns Rover right the specified angle in degrees. (If no angle value is provided, 90 degrees will be the default.)

	stop()
	Stops any current movement immediately.

Add the following commands to the Python program you created above.
· Move the Rover backward 5 units
· Make the Rover turn right 30 degrees
· Move the Rover forward 3 units
· Make the Rover turn right 120 degrees
· Move the Rover forward 3 units
· Make the Rover turn left 150 degrees
· Move the Rover forward 5 units

Run your program. The path that the Rover will move would be similar to the Turtle path shown in the output to the right.

2. Another Menu to explore is the Inputs Menu. This menu has commands and functions that gets values from the Rover and sends them as input to the program to use. We are going to experiment with 2 of the options from this menu.

Menu > TI Rover > Inputs
	Item
	Description

	ranger_measurement()
	Reads the ultrasonic distance sensor on the front of the Rover, returning the current distance in meters.

	color_measurement()
	Returns a value from 1 to 9, indicating the predominant color being “seen” by the Rover Color input sensor.
1 – red 6 – yellow
2 - green 7 – black
3 – blue 8 – grey
4 – cyan 9 – white
5 – magenta

Create a new TNS document and add a Python Program and call the program roverWalkthrough2. Add lines of code to your program to accomplish each of the tasks listed below.
 roverWalkthrough2 Part 1:
· Add the import commands needed to perform the tasks below.
· Measure the ultrasonic distance your Rover is from a wall. Store this value in a variable, ‘d’. Print the value of ‘d’.
· d = rv.ranger_measurement()
· print(d)
· If the distance, ‘d’ from the wall is greater than or equal to 1 meter have the Rover turn right by 90 degrees and then move forward 5 units.
· If the distance, ‘d’, is less than 1 meter have the Rover move backward 4 units
· Have your program pause for 5 seconds (Technology reminder: The command to allow the program to pause is in the time module,)

Run your program to make sure this part works before continuing. After running the program once, pick up the Rover and move it to a new location and run the program again. Continue until you are sure everything is working accurately.

 roverWalkthrough2 Part 2:
· Determine the prominent color “seen” by the Rover. Store this value in a variable, ‘c’. Print the value of ‘c’.
· c = rv.color_measurement()
· print(c)
· If the value of ‘c’ is 1 print the word ‘RED’.
· If the value of ‘c’ is 2 print the word ‘GREEN’.
· If the value of ‘c’ is 3 print the word ‘BLUE’.
· If the value of ‘c’ is any other number print the word ‘OTHER’.

Run your program. Just as before, pick up and move the Rover. Try putting your Rover over “different” colors and see if it is picking up the colors correctly.

3. A third Menu to experiment with is Outputs.

Menu > TI Rover > Outputs
	Item
	Description

	color_rgb(r,g,b)
	Sets the color of the Rover RGB LED to the specific red, green, blue values. The values of r, g, and b should be in the range of 0 to 255.

	color_blink(frequency,time)
	Sets the blinking frequency and duration for the selected color.

	color_off()
	Turns the Rover RGB LED off.

The color_rgb(r,g,b) works just like the Hub rgb(red,green,blue) worked before, so you can look back at your color chart for the Hub to come up with colors to use.
Go back to your program roverWalkthrough2. We are going to add to this program to not only print the color words but to also make the Rover RGB LED set to the color encountered.
 roverWalkthrough2 Part 3:
· If the value of ‘c’ is 1 print the word ‘RED’ AND set the Rover RGB LED to RED and make it blink with a frequency of 5 for a duration of 3, pause for 5 seconds, and then set the Rover RGB LED back to ‘RED’.
· color_rgb(255,0,0)
· color_blink(5,3)
· sleep(5)
· color_rgb(255,0,0)
· If the value of ‘c’ is 2 print the word ‘GREEN’ AND set the Rover RGB LED to GREEN and make it blink with a frequency of 5 for a duration of 3, pause for 5 seconds, and then set the Rover RGB LED back to ‘GREEN’..
· If the value of ‘c’ is 3 print the word ‘BLUE’ AND set the Rover RGB LED to BLUE and make it blink with a frequency of 5 for a duration of 3, pause for 5 seconds, and then set the Rover RGB LED back to ‘BLUE’.
· If the value of ‘c’ is any other number print the word ‘OTHER’ AND set the Rover RGB LED to a color of your choice and make it blink with a frequency of 5 for a duration of 3, pause for 5 seconds, and then set the Rover RGB LED back to the color of your choice.
· Have your program pause for another 3 seconds
· Turn off the RGB LED.

Run your program. Just as before, pick up and move the Rover. Try putting your Rover over “different” colors and see if the Rover picks up the colors and changes the RGB LED to match the colors found.

4. The final Menu to experiment with at this time is the Commands menu.

Menu > TI Rover > Commands
	Item
	Description

	sleep(seconds)

Can use sleep from the time module or from this menu but regardless you must import time.
	Pauses the program for the specified number of seconds. Imported from the time module.

	wait_until_done()
	Pauses the program until the Rover finishes the current command. This is a helpful way to synchronize non-Rover commands with the Rover’s motion.

roverWalkthrough2 Part 4:
Go back to your program roverWalkthrough2 one more time. Replace the last sleep command that is directly before you turn off the RGB LED with the wait_until_done() command. Run your program again.

Repetition Revisited
5. Another type of repetition structure. Earlier we examined the ‘for’ repetition structure. This particular repetition structure is used when you know how many times a set of code needs to be repeated. There is another type of repetition structure called ‘while’. This repetition is often used when you DO NOT know ahead of time the number of repetitions needed.

Menu > Built-Ins > Control >
	Item
	Description

	while..
	Executes statements in a code block until a condition evaluates to False

A ‘while’ loop MUST include a statement inside the code block that allows the value controlling the condition to change. If you do not include such a statement you will end up with an infinite loop.

	Tech Tip: A ‘while’ repetition structure can easily lead to an infinite loop. Just a reminder of how to break out of an infinite loop.

When using an Nspire handheld:
Press the ‘On’ button repeatedly to break out of an infinite loop.
When using a PC with Nspire software:
[bookmark: _GoBack]Press ‘F12’ and ‘Enter’ repeatedly.
When using a Mac with Nspire software:
Press ‘F5’ and ‘Enter’ repeatedly.

Start a New TNS document and add a Python program named whileWalkthrough.
See code to the right to help perform tasks below.
· Add the imports needed to complete the tasks below
· Measure the ultrasonic distance your Rover is from a wall. Store this value in a variable named ‘d’. Print the value of ‘d’.
· Create a ‘while’ repetition to have the Rover performs the following tasks as long as the distance from the wall is greater than 1 meter.
· Move forward 1 unit
· Set the RGB LED color to a shade of green
· Make the RGB LED blink with a frequency of 5 for a time of 3 units
· Have the Rover wait to continue until the above tasks are completed
· Set the RGB LED back to the same shade of green
· Measure the ultrasonic distance your Rover is from a wall and store the value in the variable ‘d’.
· Print the value of ‘d’
· Once you exit the loop, set the RGB LED to a shade of red
· Make the RGB LED blink with a frequency of 5 for a time of 3 units.

Run your program to ensure that all works as required.
6. Conditionals and the Rover:

Programming Challenge: Write a program using conditionals and the TI Rover to simulate a backup camera.

Start a New TNS document and add a Python program named roverChallenge.
· Add the imports needed to complete the tasks below
· Measure the ultrasonic distance your Rover is from a wall. Store this value in a variable, ‘d’. Print the value of ‘d’
· Create a ‘while’ repetition to have the Rover performs the following tasks as long as the distance from the wall is greater than 0.1 meter.
· Make the Rover move forward 1 unit
· Determine if the distance ‘d’ is greater than or equal to 1 meter and when so perform tasks below.
· Set the Rover’s RGB LED to green
· If the distance ‘d’ is less than 1 meter and greater than or equal to 0.5 meter perform the following tasks
· Set the Rover’s RGB LED to yellow
· Make a note of your choosing play for ½ second
· Pause for ½ second
· Repeat the previous 2 commands one time
· If the distance d is less than 0.5 meter and greater than or equal to 0.25 meter perform the following tasks
· Set the Rover’s RGB LED to yellow
· Make the Rover’s RGB LED blink for a frequency of 5 for a time of 5 seconds
· Play a note of your choosing for ½ second. This note should be more “severe” than the previous note as to get the attention of the driver.
· Pause for ½ second
· Repeat the previous 2 commands 4 more times
· If none of the above conditions are met, perform the following tasks
· Set the Rover’s RGB LED to red
· Make the RGB LED blink with a frequency of 5 for a time of 5 seconds
· Play a note of your choosing for ½ second. This note should be even more “severe” than the previous
· Pause for ½ second
· Repeat the previous 2 commands 4 more times
· Make the Rover stop
· Measure the ultrasonic distance of the Rover from a wall and again store this value in the variable ‘d’.
· Print the value of ‘d’
	

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

 .

[image:]

[image:]

	Tech Tip: The wait_until_done() command can be really useful when you combine the Hub sound commands with the Rover commands. This command allows the sounds to play before the next movement is accomplished

[image:]

[image:]

©2022 Texas Instruments Incorporated	1	education.ti.com
image1.tmp
1
2 Run),
3 Edt ¢ A—T)
4 Buit-ins >
s
6
7

= [importt_roveras v |

Random 5
I PlotLib rve

:
3 Inputs »
Comume fpwe
5 Path »

€A More Madules ¢ ¢ '
.

W B Variables 7 Commands

image2.tmp
rPooNO vewnE

backward(distance)
left(angle_degrees)
right(angle_degrees)
Drive with Options
stop0)

stop_clear0
resume()

stay(time)
to_xy(x,y)

igs
mands

n

»
»
»
»
»

image3.tmp

image4.tmp
% 1 Actions

D 2 Run

1

2 color_measurement(1-9

3 red_measurement0 0-2551 1V
4 green_measurementO 0-255 »
5 blue_measurement(0-255[0%
6 gray_measurement() 0-255 »
7 encoders_gyro_measurement0 list ¥
8 gyro_measurement() degrees
9 ranger_timeQ seconds »

image5.tmp
0 0
6 *roverWalkthrough2.py 655
import i_rover as rv

d = v.ranger_measurement(

print(d)
/ADD YOUR CONDITIONAL HERE

image6.tmp
roverWalkthrough2py

Code for Conditional 1

lc = rv.color_measurement0
Jprint)

JADD YOUR 2nd CONDITIONAL HERE.

image7.tmp
% 1 Actions)
»

b 2 Run
. n
I 3 Edit 0

»
it 4 Buit-ins »
V5 Math ‘1

color_blink(frequency, time)
color_off()

motor_left(speed, time)
motor_right(speed, time)

motors(ldir", left_val, 'rdir", right_val, time)

1
2
3
4
5
6

image8.png
11
[*roverWalkthrough2.py

23/52

PREVIOUS CODE

ifc==1:

print("RED")
rv.color_rgb(255,0,0)
rv.color_blink(5,3)
sleep(5)
rv.color_rgh(255,0,0)

YOU COMPLETE YOUR CODE HERE

image9.tmp
rooNouswnE

n

text_at(row, "text", "align")

clsO

while get_key0) 1= "esc':

wait_until_doneO iLrover as v

while not path_done »

position(x,y) »

position(x,y, heading, "unit’) 3 »

grid_origin0) »

grid_m_unit(scale_value) 5 »
~ ads »

image10.tmp
% 1 Actions)

PO DN G A WN

if..else..
if..elf..else..

for index in range(size):

for index in range(start, stop):

for index in range(start, stop, step):
for index in list:

while..

elf:

else:

n

image11.tmp
Al 1.1 g whileWal..ugh RAD [] X

A *whileWalkthrough.py 1418
while d > 1:

CODE MOVEMENT AND
RGB LED AS REQUIRED

d = rv.ranger_measurement(
print(d)

CODE RGB LED AS REQUIRED

image12.jpeg

