1. The following diagram shows $\triangle A B C$. Diagram not to scale.

$A \widehat{B} C=30^{\circ}$
$B \hat{C} A=45^{\circ}$
$A B=16$
Find $A C$.

Mark scheme:

Method 1

Valid approach to find the height of $\triangle A B C$.
E.g. $\sin 30=\frac{x}{16}$ and $\cos 60=\frac{x}{13}$
$\sin 30=\frac{1}{2}$ or $\cos 60=\frac{1}{2}$
Height $=8$
Correct working
$\sin 45=\frac{8}{A C^{\prime}} \sqrt{8^{2}+8^{2}}$
Correct working
$\sin 45=\cos 45=\frac{1}{\sqrt{2}}$

Correct answer
$P R=8 \sqrt{2}$

Method 2

Correct substitution in the Law of Sines

$$
\begin{align*}
& \frac{x}{\sin 30^{\circ}}=\frac{16}{\sin 45^{\circ}} \tag{M1}\\
& \sin 30^{\circ}=\frac{1}{2} \text { and } \sin 45^{\circ}=\frac{1}{\sqrt{2}} \tag{A1}\\
& x \sin 45^{\circ}=16 \sin 30^{\circ} \tag{A1}\\
& x=8 \sqrt{2} \tag{A1}
\end{align*}
$$

