1. The graph of the function f is shown below.

Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(2), g^{\prime}(2)$, and $g^{\prime \prime}(2)$.
(b) Find the interval(s) within $(-3,3)$ where g is
(3 marks)
(2 marks) decreasing.
(c) Find the interval(s) within $(-3,3)$ where the graph of g is concave down. Explain your reasoning.
(d) On the axes below, sketch the graph of g on the closed interval $[-3,3]$.

(2 marks)
(3 marks)

Mark scheme:
(a) $g(2)=\int_{0}^{1} f(t) d t=-\int_{-1}^{0} f(t) d t=-4$
(b) g is decreasing on $-3<x<-2$ and $2<x<3$ $g^{\prime}(x)=f(x)<0$ on these intervals
(c) The graph is concave down on $0<x<3$. This is true because $g^{\prime \prime}(x)=f^{\prime}(x)<0$ on this interval, or because $g^{\prime}(x)=f(x)$ is decreasing on this interval.
(d)

$g(-3)=g(0)=g(3)=0$
Appropriate increasing/decreasing and concavity behavior.

