1. Due to Alex's severe allergies, she takes 30 mg of a drug every day. Her doctor informs her that the amount of the drug will decrease in her bloodstream by 12% each hour.
(a) Model this information in the form $D(t)=a(b)^{t}$ for the (2 marks) constants a and b that give the quantity of the drug, in milligrams, that remain in the bloodstream t hours after she takes the medicine.
(b) Find the amount of the drug that remains in her bloodstream (2 marks) after 1 day.
(c) Find how long it will take for half of the drug to be out of her bloodstream.

Mark scheme:
(a) $D(t)=30(.88)^{t}$
(A1)(A1)
A1 for the 30 and A1 for the .88
(b) $D(24)=30(.88)^{24}$

$$
\begin{equation*}
D(24)=1.40 \mathrm{mg} \tag{M1}
\end{equation*}
$$

(c) $15=30(.88)^{t}$
$0.5=(.88)^{t}$
Solve by graphing or using logs
For example: $\log _{0.88} 0.5=t$
$t=5.42$ hours

