1. Given: $\quad f(x)=\frac{2}{3} x^{3}-\frac{7}{2} x^{2}-4 x+1$
(a) Find $f^{\prime}(x)$
(b) Find the intervals of x for which $f(x)$ is increasing and decreasing
(c) Find $f^{\prime \prime}(x)$
(d) Find the intervals of x for which $f(x)$ is concave up and (4 marks) concave down

Mark scheme:
(a) $f^{\prime}(x)=2 x^{2}-7 x-4$
(b) $0=2 x^{2}-7 x-4$

Solving for x
$0=(2 x+1)(x-4)$
$x=-\frac{1}{2}, 4$
Increasing: $\quad\left(-\infty,-\frac{1}{2}\right) \cup(4, \infty)$
Decreasing: $\quad\left(-\frac{1}{2}, 4\right)$
(c) $f^{\prime \prime}(x)=4 x-7$
(d) $0-4 x-7$
$x=\frac{7}{4}$
Concave up: $\quad\left(-\infty, \frac{7}{4}\right)$
Concave down: $\quad\left(\frac{7}{4}, \infty\right)$
(A1)(A1)(A1)
(M1) ft Setting their first derivative $=0$
(A1) ft
(A1) ft
(A1) ft
(A1) $\mathrm{ft}(\mathrm{M} 1) \mathrm{ft}$
(M1) ft Setting their second derivative $=0$
(A1) ft
(A1) ft
(A1) ft

