Topic 5: Calculus

Graphical behaviors of functions and the relationship between $f, f', \text{ and } f''$

1. Given:
\[f(x) = \frac{2}{3}x^3 - \frac{7}{2}x^2 - 4x + 1 \]

(a) Find $f'(x)$

(b) Find the intervals of x for which $f(x)$ is increasing and decreasing

(c) Find $f''(x)$

(d) Find the intervals of x for which $f(x)$ is concave up and concave down

Mark scheme:

(a) \[f'(x) = 2x^2 - 7x - 4 \] (A1)(A1)(A1)

(b) \[0 = 2x^2 - 7x - 4 \] Setting their first derivative = 0

Solving for x
\[0 = (2x + 1)(x - 4) \]
\[x = -\frac{1}{2}, 4 \]

Increasing: \((-\infty, -\frac{1}{2}) \cup (4, \infty) \) (A1) ft

Decreasing: \((-\frac{1}{2}, 4) \) (A1) ft

(c) \[f''(x) = 4x - 7 \] (A1) ft (M1) ft

(d) \[0 - 4x - 7 \] Setting their second derivative = 0
\[x = -\frac{7}{4} \] (A1) ft

Concave up: \((-\infty, -\frac{7}{4}) \) (A1) ft

Concave down: \((-\frac{7}{4}, \infty) \) (A1) ft