Monday Night Calculus

Strategy for Testing Series

Exercises

1. Determine whether each series converges or diverges. Explain you reasoning.
(a) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$

Use the Ratio Test with $a_{n}=\frac{2^{n}}{n!}$.
$\frac{a_{n+1}}{a_{n}}=\frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^{n}}{n!}}=\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}=\frac{2}{n+1}$
$\lim _{n \rightarrow \infty} \frac{2}{n+1}=0<1$
Therefore by the Ratio Test, the series is absolutely convergent, and therefore convergent.
(b) $\sum_{n=1}^{\infty} \frac{2+n}{2 n}$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2+n}{2 n}=\lim _{n \rightarrow \infty} \frac{\frac{2}{n}+1}{2}=\frac{1}{2} \neq 0
$$

The series diverges by the Test for Divergence.
(c) $\sum_{n=1}^{\infty} \frac{2}{n^{2}}$

The function $f(x)=\frac{2}{x^{2}}$ is continuous, positive, and decreasing on $[1, \infty)$.
Use the Integral Test.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{2}{x^{2}} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{2}{x^{2}} d x=\lim _{b \rightarrow \infty}\left[-\frac{2}{x}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{2}{b}+\frac{2}{1}\right]=2
\end{aligned}
$$

Since the integral is convergent, the series is convergent, by the Integral Test.
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$

This is an alternating series. Let $b_{n}=\frac{1}{\sqrt{n}}$.
$b_{n+1}=\frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}}=b_{n}$ for all n
$\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
The series is convergent by the Alternating Series Test.
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{\sqrt{n}}$
$\sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
The series diverges: a p-series with $p=\frac{1}{2} \leq 1$
(f) $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$

Use the Ratio test with $a_{n}=\frac{n^{2}}{2^{n}}$

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{(n+1)^{2}}{2^{n+1}}}{\frac{n^{2}}{2^{n}}}=\frac{(n+1)^{2}}{2^{n+1}} \cdot \frac{2^{n}}{n^{2}}=\frac{1}{2}\left(\frac{n+1}{n}\right)^{2} \\
& \lim _{n \rightarrow \infty} \frac{1}{2}\left(\frac{n+1}{n}\right)^{2}=\frac{1}{2}<1
\end{aligned}
$$

Therefore by the Ratio Test, the series is absolutely convergent, and therefore convergent.
2. For $n=1,2,3, \ldots$, let $a_{2 n}=\frac{1}{n}$ and $a_{2 n-1}=-\frac{1}{2^{n}}$, so that

$$
\sum_{i=1}^{\infty} a_{i}=-\frac{1}{2}+1-\frac{1}{4}+\frac{1}{2}-\frac{1}{8}+\frac{1}{3}-\frac{1}{16}+\frac{1}{4}+\cdots
$$

Does the alternating series test apply? Does this series converge or diverge?

The alternating series test does not apply. The terms do alternate in sign and the terms approach 0 , but the terms do not decrease in absolute value monotonically.
This series is actually a perfect shuffling of the negative of a convergent geometric series $(r=1 / 2)$ and the harmonic series. Since the harmonic series diverges, the given series also diverges.
3. Let f be the function defined by $f(x)=2 x^{3}-5 x^{2}+7 x-6$.
(a) Find the second degree Taylor polynomial, q_{0}, or f about $x=0$ and the second degree Taylor polynomial, q_{2} for f about $x=2$. Graph f, q_{0}, and q_{2} on the same coordinate axes.

$$
\begin{aligned}
& f(x)=2 x^{3}-5 x^{2}+7 x-6: f(0)=-6, f(2)=4 \\
& f^{\prime}(x)=6 x^{2}-10 x+7: f^{\prime}(0)=7, f^{\prime}(2)=11 \\
& f^{\prime \prime}(x)=12 x-10: f^{\prime \prime}(0)=-10, f^{\prime \prime}(2)=14 \\
& f^{\prime \prime \prime}(x)=12, f^{(n)}=0, \text { for } n \geq 4 \\
& q_{0}(x)=-6+7 x-\frac{10}{2!} x^{2}=-6+7 x-5 x^{2} \\
& q_{2}(x)=4+11(x-2)+7(x-2)^{2}
\end{aligned}
$$

(b) Find the third degree Taylor polynomial, p, for f about $x=2$. Graph p and f on the same coordinate axes.

$$
p(x)=4+11(x-2)+7(x-2)^{2}+2(x-2)^{3}
$$

(c) Use the LaGrange error bound to explain why an nth degree Taylor polynomial approximation about any value $x=a$ to an nth degree polynomial function will always be an exact match.

$$
\left|R_{n}(x)\right| \leq \max _{z \text { between } x \text { and } a}\left|f^{(n+1)}(z)\right| \cdot \frac{|x-a|^{n+1}}{(n+1)!}
$$

If f is an nth degree polynomial, then $f^{(n+1)}(x)=0$ and the LaGrange error bound is 0 . The nth degree Taylor polynomial is an exact match.
4. The Maclaurin series for $\sin x$ is

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

(a) Use the first 5 nonzero terms of the series to approximate $\sin (1.0)$.
$\sin (1) \approx 1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\frac{1}{9!}=0.841471$
(b) What is the alternating series error bound for the approximation found in part (a)?

Error $\leq \frac{1}{11!}=0.0000000250521$
(c) What is the Lagrange error bound for the approximation found in part (a)?

The ninth degree MacLaurin polynomial for $\sin x$ is the same as the tenth degree MacLaurin polynomial since the coefficient of the tenth degree term is 0 , so $n=10$.

All derivatives of $\sin x$ are bounded by -1 and 1 .
$\left|R_{n}(x)\right| \leq 1 \cdot \frac{|1-0|^{11}}{11!}=0.0000000250521$

Bonus Check:

$\sin 1=0.841470984808$ (to 12 decimal places)
$1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\frac{1}{9!}=0.841471009700$
$|0.841470984808-0.8414710097|=0.000000024892$ WOW!
5. Use the Integral Test error bound to estimate the error in using $\sum_{n=1}^{10} \frac{1}{n^{3}}$ to approximate $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$

$$
\begin{aligned}
& s_{10}=\sum_{n=1}^{10} \frac{1}{n^{3}}=1.19753 \\
& \int_{11}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{242}=0.004132 \\
& \int_{10}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{200}=0.005 \\
& 1.19753+0.004132=1.201662 \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}} \leq 1.20253=1.19753+.005
\end{aligned}
$$

The lower and upper bounds are less than 0.001 apart.

