Monday Night Calculus

Slope Fields and Differential Equations

Exercises

1. The indefinite integral (antiderivative) formula

$$
\int \frac{1}{x} d x=\ln |x|+C \quad \text { where } C \text { is an arbitrary constant }
$$

is found in the inside cover of almost every calculus book. We can interpret this result as the general solution to the differential equation

$$
\frac{d y}{d x}=\frac{1}{x}
$$

which led mathematician David Tall to write an article called "Lies, Damned Lies, and Differential Equations."
(a) Sketch a slope field for the differential equation $\frac{d y}{d x}=\frac{1}{x}$ and the three functions $y_{1}=\ln |x|+3, y_{2}=\ln |x|+1$, and $y_{3}=\ln |x|-2$ on the same coordinate axes. Are these three functions solutions to the differential equation for all nonzero x values?

The three functions are solutions to the differential equation for all nonzero x values.
(b) Find a solution to the differential equation that is valid for all nonzero x values, but is not of the form $y=\ln |x|+C$.

Here is a solution: $f(x)= \begin{cases}\ln (-x)+1 & \text { if } x<0 \\ \ln (x)-2 & \text { if } x>0\end{cases}$
Note that we can choose different constants for the two parts of the domain: $x<0$ and $x>0$.
2. (a) For a differential equation of the form $\frac{d y}{d x}=f(x)$, the line segments in the slope field in any vertical column will all have the same slope. Similarly, for a differential equation of the form $\frac{d y}{d x}=g(y)$, the line segments in the slope filed in and horizontal row will all have the same slope. Explain why.

If $\frac{d y}{d x}=f(x)$, all the segments in a vertical column are centered at the same x-value and, therefore, will have the same slope $f(x)$ for that x-value.
Similarly, if $\frac{d y}{d x}=g(y)$, all the segments in a horizontal row are centered at the same y-value and, therefore, will have the same slope $g(y)$ for that y-value.
(b) Sketch a slope field for the differential equation $\frac{d y}{d x}=\sec ^{2} x$.

Find a solution $y=f(x)$ to this differential equation whose graph passes through the origin.

(c) Sketch a slope field for the differential equation $\frac{d y}{d x}=1+y^{2}$.

Show that the function found in part (b) is also a solution to this differential equation whose graph passes through the origin.

(d) Find the general solution to the differential equation $\frac{d y}{d x}=\sec ^{2} x$.

$$
\begin{aligned}
d y & =\sec ^{2} x d x \\
\int d y & =\int \sec ^{2} x d x \\
y & =\tan x+C
\end{aligned}
$$

(e) Use separation of variables to find the general solution to the differential equation $\frac{d y}{d x}=1+y^{2}$. Compare this solution with the general solution found in part (d).

$$
\begin{aligned}
\frac{d y}{1+y^{2}} & =d x \\
\int \frac{d y}{1+y^{2}} & =\int d x \\
\tan ^{-1} y & =x+C \\
y & =\tan (x+C)
\end{aligned}
$$

Note the difference in the role of the arbitrary constant C.
One results in a vertical shift and the other a horizontal shift!
3. Match each differential equation (A)-(F) with a slope field (I)-(VI).
(A) $\frac{d y}{d x}=e^{-x^{2}}$
(B) $\frac{d y}{d x}=\frac{y}{1+x^{2}}$
(C) $\frac{d y}{d x}=x+y+1$
(D) $\frac{d y}{d x}=\frac{1}{y}$
(E) $\frac{d y}{d x}=\frac{-x y}{6}$
(F) $\frac{d y}{d x}=\frac{y(4-y)}{2}$
(I)

(V)

(II)

(IV)

(VI)

$(\mathrm{A}) \rightarrow(\mathrm{V})$;
(B) \rightarrow (III) ;
(C) \rightarrow (I);
(D) \rightarrow (VI) ;
(E) \rightarrow (II);
(F) \rightarrow (IV)

