Monday Night Calculus

Volume

Exercises

1. Let R be the region in the first quadrant bounded by the graph of $y=\frac{4}{\sqrt{1+x^{2}}}$, the coordinate axes, and the vertical line $x=1$. Find the volume of the solid obtained when R is rotated about the x-axis.

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(\frac{4}{\sqrt{1+x^{2}}}\right)^{2} d x=16 \pi \int_{0}^{1} \frac{1}{1+x^{2}} d x \\
& =16 \pi\left[\tan ^{-1} x\right]_{0}^{1}=16 \pi\left[\tan ^{-1} 1-\tan ^{-1} 0\right] \\
& =16 \pi\left[\frac{\pi}{4}-0\right]=4 \pi^{2}
\end{aligned}
$$

2. (a) Let R be the region in the first quadrant bounded by the graph of $y=36-x^{2}$ and the coordinate axes. A container has the shape of the solid formed by rotating the region R about the x-axis. If the units on the axes are centimeters, how many liters of water does the container hold?

$$
\begin{aligned}
V & =\pi \int_{0}^{6}\left(36-x^{2}\right)^{2} d x=\pi \int_{0}^{6}\left(1296-72 x^{2}+x^{4}\right) d x \\
& =\pi\left[1296 x-24 x^{3}+\frac{x^{5}}{5}\right]_{0}^{6} \\
& =\pi\left[\left(1296 \cdot 6-24 \cdot 6^{3}+\frac{6^{5}}{5}\right)-(0)\right]=\frac{20736 \pi}{5} \\
& =13028.813 \text { cubic } \mathrm{cm} \text { or } 13.029 \text { liters }
\end{aligned}
$$

(b) Suppose a second container has the shape of the solid formed by rotating the region R (described in part (a)) about the y-axis. Find the resulting volume of the container.

$$
\begin{aligned}
y & =36-x^{2} \Rightarrow x=\sqrt{36-y} \\
V & =\pi \int_{0}^{36}(\sqrt{36-y})^{2} d y=\pi \int_{0}^{36}(36-y) d y \\
& =\pi\left[36 y-\frac{y^{2}}{2}\right]_{0}^{36}=\pi\left[36^{2}-\frac{36^{2}}{2}\right]=648 \pi \\
& =2035.752 \text { cubic cm or } 2.036 \text { liters }
\end{aligned}
$$

3. Let R be the region bounded by the graphs of $y=2-x^{2}$ and $y=e^{x}$. Find the volume of the solid generated when R is rotated about the x-axis.

$$
2-x^{2}=e^{x} \Rightarrow a=-1.316, \quad b=0.537
$$

$$
V=\pi \int_{a}^{b}\left[\left(2-x^{2}\right)^{2}-\left(e^{x}\right)^{2}\right] d x=11.113
$$

4. Let R be the region bounded by the graph of $y=\sqrt{x}$, the x-axis, and the vertical line $x=4$. Let S_{1} be the solid obtained by rotating the region R about the x-axis. Let S_{2} be the solid obtained by rotating the region R about the line $y=2$.

(a) Which solid, S_{1} or S_{2}, has the greater volume? Show the calculations that support your conclusion.

$$
\begin{aligned}
V\left(S_{1}\right) & =\pi \int_{0}^{4}(\sqrt{x})^{2} d x=\pi \int_{0}^{4} x d x \\
& =\pi\left[\frac{x^{2}}{2}\right]_{0}^{4}=\pi \cdot \frac{16}{2}=8 \pi \\
V\left(S_{2}\right) & =\pi \int_{0}^{4}\left[2^{2}-(2-\sqrt{x})^{2}\right] d x=\pi \int_{0}^{4}(4-(4-4 \sqrt{x}+x)) d x \\
& =\pi \int_{0}^{4}(4 \sqrt{x}-x) d x=\pi\left[4 \cdot \frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{4} \\
& =\pi\left(4 \cdot \frac{2}{3} \cdot 8-8\right)=\pi\left(\frac{64}{3}-8\right)=\frac{40 \pi}{3}
\end{aligned}
$$

(b) There is a constant $c \neq 2$ such that the volume of the solid of revolution obtained by rotating the region R about the horizontal line $y=c$ is the same as the volume of S_{2}. Set up an equation involving integrals that could be used to solve for c, and use it to find c.

Solve the following equation for c :
$\pi \int_{0}^{4}\left[(\sqrt{x}-c)^{2}-c^{2}\right] d x=\frac{40 \pi}{3}$

$$
\begin{aligned}
I & =\pi \int_{0}^{4}\left[x-2 c \sqrt{x}+c^{2}-c^{2}\right] d x=\pi \int_{0}^{4}[x-2 c \sqrt{x}] d x \\
& =\pi\left[\frac{x^{2}}{2}-2 c \frac{x^{3 / 2}}{3 / 2}\right]_{0}^{4}=\pi\left(8-2 \cdot c \cdot \frac{2}{3} \cdot 8\right) \\
& =\pi\left(8-\frac{32 c}{3}\right)
\end{aligned}
$$

Set this expression equal to the volume of the solid S_{2}.

$$
\begin{aligned}
\pi\left(8-\frac{32 c}{3}\right) & =\frac{40 \pi}{3} \\
\pi\left(\frac{24-32 c}{3}\right) & =\frac{40 \pi}{3} \\
24-32 c & =40 \\
-32 c & =16 \Rightarrow c=-\frac{1}{2}
\end{aligned}
$$

