Monday Night Calculus

Polar Equations

Exercises

1. Spiraling Under Control

Consider the curve C given by the polar equation $r = \frac{2\theta}{\pi}$ for $0 \le \theta \le 2\pi$.

- (a) Sketch the graph of the curve C and find an equation of the tangent line to the curve at the point where $\theta = \frac{3\pi}{4}$.
- (b) Find the first value in the interval $0 \le \theta \le 2\pi$ for which the tangent line to the curve C is vertical.
- (c) The region R is bounded by the curve C and the line segment that connects the origin to the point (x, y) = (4, 0). Find the area of the region R.
- (d) Find the length of the curve C.

2. Rabbit Ears (Bifolium)

Consider the curve C defined by the polar equation $r(\theta) = 12 \sin \theta \cos^2 \theta$ for $0 \le \theta \le \pi$.

- (a) Sketch the graph of the curve C. Find the polar coordinates (r, θ) of the point on the curve in the first quadrant that is farthest from the origin.
- (b) Find an equation of the line tangent to the curve C at the point found in part (a).
- (c) Find the total area enclosed by the curve C.

3. An Infinity Curve

Consider the curve C defined by the polar equation $r = 5\sqrt{\cos 2\theta}$.

- (a) Sketch the graph of the curve C.
- (b) There are two horizontal lines tangent to the curve. Find these lines and the values for θ , $0 \le \theta \le 2\pi$, at which they occur.
- (c) Find $\lim_{\theta \to (\pi/4)^{-}} \frac{dr}{d\theta}$ or explain why it does not exist.
- (d) Find $\lim_{\theta \to (\pi/4)^-} \frac{dy}{dx}$ or explain why it does not exist.
- (e) Find the total area enclosed by the curve C. Hint: Carefully consider the domain of r.