Monday Night Calculus

Polar Equations

Exercises

1. Spiraling Under Control

Consider the curve C given by the polar equation $r=\frac{2 \theta}{\pi}$ for $0 \leq \theta \leq 2 \pi$.
(a) Sketch the graph of the curve C and find an equation of the tangent line to the curve at the point where $\theta=\frac{3 \pi}{4}$.
(b) Find the first value in the interval $0 \leq \theta \leq 2 \pi$ for which the tangent line to the curve C is vertical.
(c) The region R is bounded by the curve C and the line segment that connects the origin to the point $(x, y)=(4,0)$. Find the area of the region R.
(d) Find the length of the curve C.

2. Rabbit Ears (Bifolium)

Consider the curve C defined by the polar equation $r(\theta)=12 \sin \theta \cos ^{2} \theta$ for $0 \leq \theta \leq \pi$.
(a) Sketch the graph of the curve C. Find the polar coordinates (r, θ) of the point on the curve in the first quadrant that is farthest from the origin.
(b) Find an equation of the line tangent to the curve C at the point found in part (a).
(c) Find the total area enclosed by the curve C.

3. An Infinity Curve

Consider the curve C defined by the polar equation $r=5 \sqrt{\cos 2 \theta}$.
(a) Sketch the graph of the curve C.
(b) There are two horizontal lines tangent to the curve. Find these lines and the values for θ, $0 \leq \theta \leq 2 \pi$, at which they occur.
(c) Find $\lim _{\theta \rightarrow(\pi / 4)^{-}} \frac{d r}{d \theta}$ or explain why it does not exist.
(d) Find $\lim _{\theta \rightarrow(\pi / 4)^{-}} \frac{d y}{d x}$ or explain why it does not exist.
(e) Find the total area enclosed by the curve C.

Hint: Carefully consider the domain of r.

