Monday Night Calculus

Slope Fields and Differential Equations

Exercises

1. The indefinite integral (antiderivative) formula

$$\int \frac{1}{x} dx = \ln|x| + C \quad \text{where } C \text{ is an arbitrary constant}$$

is found in the inside cover of almost every calculus book. We can interpret this result as the general solution to the differential equation

$$\frac{dy}{dx} = \frac{1}{x}$$

which led mathematician David Tall to write an article called "Lies, Damned Lies, and Differential Equations."

- (a) Sketch a slope field for the differential equation $\frac{dy}{dx} = \frac{1}{x}$ and the three functions $y_1 = \ln|x| + 3$, $y_2 = \ln|x| + 1$, and $y_3 = \ln|x| 2$ on the same coordinate axes. Are these three functions solutions to the differential equation for all nonzero x values?
- (b) Find a solution to the differential equation that is valid for all nonzero x values, but is not of the form $y = \ln |x| + C$.
- **2.** (a) For a differential equation of the form $\frac{dy}{dx} = f(x)$, the line segments in the slope field in any vertical column will all have the same slope. Similarly, for a differential equation of the form $\frac{dy}{dx} = g(y)$, the line segments in the slope filed in and horizontal row will all have the same slope. Explain why.
 - (b) Sketch a slope field for the differential equation $\frac{dy}{dx} = \sec^2 x$. Find a solution y = f(x) to this differential equation whose graph passes through the origin.
 - (c) Sketch a slope field for the differential equation $\frac{dy}{dx} = 1 + y^2$. Show that the function found in part (b) is also a solution to this differential equation whose graph passes through the origin.
 - (d) Find the general solution to the differential equation $\frac{dy}{dx} = \sec^2 x$.
 - (e) Use separation of variables to find the general solution to the differential equation $\frac{dy}{dx} = 1 + y^2$. Compare this solution with the general solution found in part (d).

3. Match each differential equation (A)-(F) with a slope field (I)-(VI).

$$(\mathbf{A}) \frac{dy}{dx} = e^{-x^2}$$

$$(B) \frac{dy}{dx} = \frac{y}{1+x^2}$$

(C)
$$\frac{dy}{dx} = x + y + 1$$

(D)
$$\frac{dy}{dx} = \frac{1}{y}$$

$$(E) \frac{dy}{dx} = \frac{-xy}{6}$$

$$\mathbf{(F)}\,\frac{dy}{dx} = \frac{y(4-y)}{2}$$

