Monday Night Calculus

Integration by Parts

Exercises

- 1. Use integration by parts to evaluate the integral $\int_0^1 x^2 \tan^{-1} x \, dx$
- **2.** (a) Evaluate the integral $\int \sin^2 x \, dx$ by using the trigonometric identity $\sin^2 x = \frac{1 \cos 2x}{2}$ and the substitution u = 2x.
 - **(b)** Evaluate the integral $\int \sin^2 x \, dx$ by using integration by parts with $u = \sin x$ and $dv = \sin x \, dx$.
- 3. (a) Use integration by parts to show that

$$\int x^n \ln x \, dx = \frac{x^{n+1}}{n+1} \left(\ln x - \frac{1}{n+1} \right) \qquad \text{for } n \neq -1$$

- (b) Fill in the gap for this formula. That is, evaluate the integral when n = -1.
- **4.** Uncle Stanley found a differentiable function f with the property f'(x) = -f(x) for all x.
 - (a) Show that for Uncle Stanley's function

$$\int f(x)\sin x \, dx = \frac{-\sin x - \cos x}{2} \cdot f(x) + C$$

- **(b)** Evaluate $\int f(x) \cos x \, dx$ where f is Uncle Stanley's function.
- (c) Explain the consequences of using integration by parts to evaluate $\int f(x)e^x dx$.
- (d) Find a candidate for Uncle Stanley's function.