Monday Night Calculus

Volume

Exercises

1. Let R be the region in the first quadrant bounded by the graph of $y=\frac{4}{\sqrt{1+x^{2}}}$, the coordinate axes, and the vertical line $x=1$. Find the volume of the solid obtained when R is rotated about the x-axis.
2. (a) Let R be the region in the first quadrant bounded by the graph of $y=36-x^{2}$ and the coordinate axes. A container has the shape of the solid formed by rotating the region R about the x-axis. If the units on the axes are centimeters, how many liters of water does the container hold?
(b) Suppose a second container has the shape of the solid formed by rotating the region R (described in part (a)) about the y-axis. Find the resulting volume of the container.
3. Let R be the region bounded by the graphs of $y=2-x^{2}$ and $y=e^{x}$. Find the volume of the solid generated when R is rotated about the x-axis.
4. Let R be the region bounded by the graph of $y=\sqrt{x}$, the x-axis, and the vertical line $x=4$. Let S_{1} be the solid obtained by rotating the region R about the x-axis. Let S_{2} be the solid obtained by rotating the region R about the line $y=2$.
(a) Which solid, S_{1} or S_{2}, has the greater volume? Show the calculations that support your conclusion.
(b) There is a constant $c \neq 2$ such that the volume of the solid of revolution obtained by rotating the region R about the horizontal line $y=c$ is the same as the volume of S_{2}. Set up an equation involving integrals that could be used to solve for c, and use it to find c.
