Monday Night Calculus

Volume

Exercises

- 1. Let R be the region in the first quadrant bounded by the graph of $y = \frac{4}{\sqrt{1+x^2}}$, the coordinate axes, and the vertical line x = 1. Find the volume of the solid obtained when R is rotated about the x-axis.
- **2.** (a) Let R be the region in the first quadrant bounded by the graph of $y = 36 x^2$ and the coordinate axes. A container has the shape of the solid formed by rotating the region R about the x-axis. If the units on the axes are centimeters, how many liters of water does the container hold?
 - (b) Suppose a second container has the shape of the solid formed by rotating the region R (described in part (a)) about the y-axis. Find the resulting volume of the container.
- **3.** Let R be the region bounded by the graphs of $y = 2 x^2$ and $y = e^x$. Find the volume of the solid generated when R is rotated about the x-axis.
- **4.** Let R be the region bounded by the graph of $y = \sqrt{x}$, the x-axis, and the vertical line x = 4. Let S_1 be the solid obtained by rotating the region R about the x-axis. Let S_2 be the solid obtained by rotating the region R about the line y = 2.
 - (a) Which solid, S_1 or S_2 , has the greater volume? Show the calculations that support your conclusion.
 - (b) There is a constant $c \neq 2$ such that the volume of the solid of revolution obtained by rotating the region R about the horizontal line y = c is the same as the volume of S_2 . Set up an equation involving integrals that could be used to solve for c, and use it to find c.