Monday Night Calculus

Rectilinear Motion

Exercises

1. Two objects oscillate along a vertical axis, starting at the same initial position $y=5$ at time $t=0$. The position of Object A at time $t, t \geq 0$, is given by $y_{1}(t)=5 e^{-t} \cos t$, and the position of Object B at time $t, t>0$, is given by $y_{2}(t)=\frac{5 \sin t}{t}$.
(a) Find the first time $t_{a}>0$ at which Object A has position 0 . What is Object A's velocity, speed, and acceleration at that time?
(b) Find the first time $t_{b}>0$ at which Object B has position 0 . What is Object B's velocity, speed, and acceleration at that time?
(c) Find the position of Object B at time t_{a} (the time found in part (a)). Are Objects A and B getting closer or are they getting farther apart at this time? Justify your answer.
(d) Find the position of Object A at time t_{b} (the time found in part (b)). Are Objects A and B getting closer or are they getting farther apart at this time? Justify your answer.
(e) Over the time interval $0 \leq t \leq \pi$, find the average velocity of Object A and Object B.
(f) Which object traveled the greater total distance over the time interval $0 \leq t \leq 2 \pi$? Show the computations that lead to your answer.
(g) Find $\lim _{t \rightarrow \infty}\left(y_{1}(t)-y_{2}(t)\right)$ or explain why the limit does not exist.
(h) On the interval $0 \leq t \leq 2 \pi$, at what time t are the two objects farthest apart? How far apart are they at this time?
2. The graph in the figure below shows the vertical velocity for an elevator as a function of time, where the velocity is measured in units of feet per second and time is measured in units of seconds, with $0 \leq t \leq 12$ seconds. The initial height, or position, of the elevator is $y(0)=6$ feet above the ground.

(a) Find the acceleration of the elevator at time $t=2$ seconds. Indicate units of measure.
(b) Is the elevator speeding up or slowing down at time $t=4$ seconds? Explain your reasoning.
(c) Find the average velocity of the elevator over the time interval $0 \leq t \leq 12$ seconds.
(d) Find the time at which the elevator reaches its greatest height above the ground. What is that height?
(e) Does the elevator ever go below ground level $(y=0)$? Justify your answer.
(f) Find the acceleration of the elevator when it is at its lowest level.
(g) Find the height of the elevator at time $t=12$ seconds.
