Monday Night Calculus

The Fundamental Theorem of Calculus

11/30 Question

1. Suppose the function g is defined by $g(x)=\int_{2}^{x} 2^{-t^{2}} d t$.
(a) Find an equation of the line tangent to the graph of g at $x=2$.
(b) Let $h(x)=g(\sqrt{x})$. Find $h(4), h^{\prime}(4)$, and $h^{\prime \prime}(4)$.
2. Let k be the function defined by $k(x)=\int_{\sin x}^{\cos x} t d t$.
(a) Find $k(0)$ and $k\left(\frac{\pi}{4}\right)$.
(b) Use the Fundamental Theorem of Calculus Part 1 to find $k^{\prime}(x)$.
(c) Use the Fundamental Theorem of Calculus Part 2 to show that $k(x)=\frac{1}{2} \cos (2 x)$.
3. Let g be the function defined by $g(x)=\int_{5}^{x} f(t) d t$ where f is the function whose graph is shown in the figure.

(a) Find $g(12)$ and $g(-5)$.
(b) Find the maximum value of g on the closed interval $[-12,12]$.
(c) Find an equation of the line tangent to the graph of g at $x=7$, or explain why the tangent line does not exist.
(d) Let $h(x)=g\left(x^{2}\right)$. Find $h^{\prime}(-3)$.
(e) Let $k(x)=g(x)^{2}$. Find $k^{\prime}(9)$.
