Monday Night Calculus

Function Analysis using Graphical Stems

11/9 Question

The graph of f^{\prime}, the derivative of a differentiable function f, is shown for $-12 \leq x \leq 12$. The graph consists of four line segments and a semicircle.

1. (a) Find all values of x in the interval $-12<x<12$, if any, at which f has a critical point. Classify each critical point as the location of a relative minimum, relative maximum, or neither, Justify your answers.
$f^{\prime}(x)=0: x=-9,-5,5$
$f^{\prime}(x)$ DNE: none
Critical points of $f: x=-9,-5,5$
f has a relative maximum at $x=-9$ because f^{\prime} changes from positive to negative there.
f has neither a relative minimum nor a relative maximum at $x=-5$ because f^{\prime} does not change sign there.
f has a relative minimum at $x=5$ because f^{\prime} changes from negative to positive there.
(b) Find the values of x in the interval $-12<x<12$ at which f has an inflection point.

Explain your reasoning.
f has an inflection point at the points where $x=-7,-5,0,7$ because f^{\prime} changes from increasing to decreasing or vice versa at these values.
(c) For $-12<x<12$, find the open intervals on which f is decreasing and concave up. Explain your reasoning.
f is decreasing where f^{\prime} is negative: $(-9,-5),(-5,5)$.
f is concave up where f^{\prime} is increasing: $(-7,-5),(0,7)$.
f is decreasing and concave up: $(-7,-5),(0,5)$
(d) For $-12<x<12$, find the open intervals on which f is increasing and concave down. Explain your reasoning.
f is increasing where f^{\prime} is positive: $(-12,-9),(5,12)$
f is concave down where f^{\prime} is decreasing: $(-12,-7),(-5,0),(7,12)$
f is increasing and concave down: $(-12,-9),(7,12)$
2. (a) It is known that $f(4)=-6$. Find an equation of the line tangent to the graph of f at $x=4$.

Point: $(4,-6)$
Equation of the half-circle: $y=-\sqrt{25-x^{2}}$
$f^{\prime}(4)=-\sqrt{25-4^{2}}=-3$
An equation of the tangent line:
$y+6=-3(x-4) \Rightarrow y=-3 x+6$
(b) Find $f^{\prime \prime}(4)$.

On the interval $(-5,5): f^{\prime}(x)=-\left(25-x^{2}\right)^{1 / 2}$
$f^{\prime \prime}(x)=-\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}(-2 x)=\frac{x}{\sqrt{25-x^{2}}}$
$f^{\prime \prime}(4)=\frac{4}{\sqrt{25-4^{2}}}=\frac{4}{3}$
Note: An alternate solution involves a radius from the center of the circle to the point $(4,-3)$.
3. Let g be the function defined by $g(x)=f^{\prime \prime}(x)$. Sketch a graph of g over the open interval $-12<x<12$.

4. (a) Find a positive value a such that $f^{\prime}(a)=f^{\prime \prime}(a)$. For this value of a, find $f^{\prime \prime \prime}(a)$.

Consider the graphs of f^{\prime} and $f^{\prime \prime}$.

$$
\begin{aligned}
& f^{\prime}(6)=3 \text { and } f^{\prime \prime}(6)=3 \\
& f^{\prime \prime \prime}(6)=0
\end{aligned}
$$

(b) Is there a negative value x such that $f^{\prime}(x)=f^{\prime \prime}(x)$? Explain why or why not.

Consider the graphs of f and $f^{\prime \prime}$.
There are two values of $x<0$ such that $f^{\prime}(x)=f^{\prime \prime}(x)$.
$f^{\prime}(-8)=f^{\prime \prime}(-8)=-2$ and there is a value $c,-5<c<-4$, such that $f^{\prime}(c)=f^{\prime \prime}(c)$.
$-\sqrt{25-x^{2}}=\frac{x}{\sqrt{25-x^{2}}} \Rightarrow x^{2}-x-25=0$
$x=\frac{-(-1) \pm \sqrt{1-4(1)(-25)}}{2(1)}=\frac{1 \pm \sqrt{101}}{2}=-4.525, \quad 5.525$
$x=\frac{1-\sqrt{101}}{2}$

