Monday Night Calculus

Function Analysis using Graphical Stems

11/9 Question

The graph of f', the derivative of a differentiable function f, is shown for $-12 \leq x \leq 12$. The graph consists of four line segments and a semicircle.

1. (a) Find all values of x in the interval $-12 < x < 12$, if any, at which f has a critical point. Classify each critical point as the location of a relative minimum, relative maximum, or neither. Justify your answers.

 $f'(x) = 0$: $x = -9, -5, 5$

 $f'(x)$ DNE: none

 Critical points of f: $x = -9, -5, 5$

 f has a relative maximum at $x = -9$ because f' changes from positive to negative there.

 f has neither a relative minimum nor a relative maximum at $x = -5$ because f' does not change sign there.

 f has a relative minimum at $x = 5$ because f' changes from negative to positive there.

(b) Find the values of x in the interval $-12 < x < 12$ at which f has an inflection point. Explain your reasoning.

 f has an inflection point at the points where $x = -7, -5, 0, 7$ because f' changes from increasing to decreasing or vice versa at these values.

(c) For $-12 < x < 12$, find the open intervals on which f is decreasing and concave up. Explain your reasoning.

 f is decreasing where f' is negative: $(-9, -5), (-5, 5)$.

 f is concave up where f' is increasing: $(-7, -5), (0, 7)$.

 f is decreasing and concave up: $(-7, -5), (0, 5)$
(d) For $-12 < x < 12$, find the open intervals on which f is increasing and concave down. Explain your reasoning.

f is increasing where f' is positive: $(-12, -9), (5, 12)$
f is concave down where f' is decreasing: $(-12, -7), (-5, 0), (7, 12)$
f is increasing and concave down: $(-12, -9), (7, 12)$

2. (a) It is known that $f(4) = -6$. Find an equation of the line tangent to the graph of f at $x = 4$.

Point: $(4, -6)$
Equation of the half-circle: $y = -\sqrt{25 - x^2}$
$f'(4) = -\sqrt{25 - 4^2} = -3$
An equation of the tangent line:
$y + 6 = -3(x - 4) \Rightarrow y = -3x + 6$

(b) Find $f''(4)$.

On the interval $(-5, 5)$: $f''(x) = -(25 - x^2)^{1/2}$

$f''(x) = -\frac{1}{2}(25 - x^2)^{-1/2}(-2x) = \frac{x}{\sqrt{25 - x^2}}$

$f''(4) = \frac{4}{\sqrt{25 - 4^2}} = \frac{4}{3}$

Note: An alternate solution involves a radius from the center of the circle to the point $(4, -3)$.

3. Let g be the function defined by $g(x) = f''(x)$. Sketch a graph of g over the open interval $-12 < x < 12$.

![Graph of f, f', and f'']
4. (a) Find a positive value \(a \) such that \(f'(a) = f''(a) \). For this value of \(a \), find \(f'''(a) \).

Consider the graphs of \(f' \) and \(f'' \).

\(f'(6) = 3 \) and \(f''(6) = 3 \)

\(f'''(6) = 0 \)

(b) Is there a negative value \(x \) such that \(f'(x) = f''(x) \)? Explain why or why not.

Consider the graphs of \(f' \) and \(f'' \).

There are two values of \(x < 0 \) such that \(f'(x) = f''(x) \).

\(f'(-8) = f''(-8) = -2 \) and there is a value \(c, -5 < c < -4 \), such that \(f'(c) = f''(c) \).

\[-\sqrt{25 - x^2} = \frac{x}{\sqrt{25 - x^2}} \Rightarrow x^2 - x - 25 = 0\]

\[x = \frac{-(-1) \pm \sqrt{1 - 4(1)(-25)}}{2(1)} = \frac{1 \pm \sqrt{101}}{2} = -4.525, \ 5.525\]

\[x = \frac{1 - \sqrt{101}}{2}\]