Monday Night Calculus

Function Analysis using Graphical Stems

11/9 Question

The graph of f^{\prime}, the derivative of a differentiable function f, is shown for $-12 \leq x \leq 12$. The graph consists of four line segments and a semicircle.

1. (a) Find all values of x in the interval $-12<x<12$, if any, at which f has a critical point. Classify each critical point as the location of a relative minimum, relative maximum, or neither, Justify your answers.
(b) Find the values of x in the interval $-12<x<12$ at which f has an inflection point. Explain your reasoning.
(c) For $-12<x<12$, find the open intervals on which f is decreasing and concave up. Explain your reasoning.
(d) For $-12<x<12$, find the open intervals on which f is increasing and concave down. Explain your reasoning.
2. (a) It is known that $f(4)=-6$. Find an equation of the line tangent to the graph of f at $x=4$.
(b) Find $f^{\prime \prime}(4)$.
3. Let g be the function defined by $g(x)=f^{\prime \prime}(x)$. Sketch a graph of g over the open interval $-12<x<12$.
4. (a) Find a positive value a such that $f^{\prime}(a)=f^{\prime \prime}(a)$. For this value of a, find $f^{\prime \prime \prime}(a)$.
(b) Is there a negative value x such that $f^{\prime}(x)=f^{\prime \prime}(x)$? Explain why or why not.
