Monday Night Calculus

Implicit Differentiation

10/26 Question

1. Let $y=\tan ^{-1} x$
(a) Find a formula for the derivative of the arctangent function, that is, find an expression for $\frac{d y}{d x}$.

$$
\begin{aligned}
& y=\tan ^{-1} x \Rightarrow \tan y=x \\
& \sec ^{2} y \frac{d y}{d x}=1
\end{aligned}
$$

Differentiate implicitly with respect to x
$\frac{d y}{d x}=\frac{1}{\sec ^{2} y}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+x^{2}}$
Solve for $\frac{d y}{d x}$; trig identity
$\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
(b) Graph the arctangent function and its derivative in the same viewing window. Describe the relationship between the two graphs.

This figure shows the graph of $f(x)=\tan ^{-1} x$ and its derivative $f^{\prime}(x)=\frac{1}{1+x^{2}}$
Notice that f is always increasing and, therefore, $f^{\prime}(x)$ is always positive.
As $x \rightarrow \pm \infty, \tan ^{-1} x \rightarrow \pm \frac{\pi}{2}$.
The graph of f flattens out as x increases and decreases without bound.
This behavior is indicated by: $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
2. Find $\frac{d y}{d x}$ by implicit differentiation.
(a) $\sin (x y)=1+\cos y$

$$
\begin{aligned}
& \cos (x y)\left(x y^{\prime}+y\right)=-\sin y \cdot y^{\prime} \\
& x y^{\prime} \cos (x y)+y^{\prime} \sin y=-y \cos (x y) \\
& y^{\prime}(x \cos (x y)+\sin y)=-y \cos (x y) \\
& y^{\prime}=\frac{-y \cos (x y)}{x \cos (x y)+\sin y}
\end{aligned}
$$

(b) $e^{y} \cos x=x+\cos y$

$$
\begin{aligned}
& e^{y}(-\sin x)+e^{y} y^{\prime} \cos x=1+(-\sin y) y^{\prime} \\
& y^{\prime} e^{y} \cos x+y^{\prime} \sin y=e^{y} \sin x+1 \\
& y^{\prime}\left(e^{y} \cos x+\sin y\right)=e^{y} \sin x+1 \\
& y^{\prime}=\frac{1+e^{y} \sin x}{e^{y} \cos x+\sin y}
\end{aligned}
$$

Here is some confirmation of these results using the TI-nspire.

3. Find an equation of the tangent line to the curve at the given point.

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2} \quad\left(0,-\frac{1}{2}\right)
$$

$$
2 x+2 y y^{\prime}=2\left(2 x^{2}+2 y^{2}-x\right)\left(4 x+4 y y^{\prime}-1\right)
$$

$$
2(0)+2\left(-\frac{1}{2}\right) y^{\prime}=2\left(2(0)^{2}+2\left(-\frac{1}{2}\right)^{2}-0\right)\left(4(0)+4\left(-\frac{1}{2}\right) y^{\prime}-1\right)
$$

$$
-y^{\prime}=(1)\left(-2 y^{\prime}-1\right) \Rightarrow y^{\prime}=-1
$$

An equation of the tangent line:
$y+\frac{1}{2}=(-1)(x-0) \Rightarrow y=-x-\frac{1}{2}$
This figure shows the graph of the expression and the tangent line.

4. The graph of the equation $y^{2}=x^{3}+3 x^{2}$ is called the Tschirnhausen cubic.
(a) Find an equation of the tangent line to this graph at the point $(1,-2)$.
$2 y y^{\prime}=3 x^{2}+6 x \Rightarrow y^{\prime}=\frac{3 x^{2}+6 x}{2 y}$
At the point $(1,-2): y^{\prime}=\frac{3(1)^{2}+6(1)}{2(-2)}=-\frac{9}{4}$
An equation of the tangent line:
$y+2=-\frac{9}{4}(x-1) \Rightarrow y=-\frac{9}{4} x+\frac{1}{4}$

(b) Find the points on this graph where the tangent line is horizontal.
$y^{\prime}=\frac{3 x^{2}+6 x}{2 y}=0 \Rightarrow 3 x^{2}+6 x=3 x(x+2)=0 \Rightarrow x=0,-2$
$x=0 \Rightarrow y=0 \Rightarrow y^{\prime}$ is in an indeterminate form.
Claim: The graph has two tangent lines at the origin. Slopes?
Therefore, the graph has horizontal tangent lines at the points: $(-2,-2),(-2,2)$
(c) Graph the Tschirnhausen cubic and the horizontal tangent lines in the same viewing window.

