Monday Night Calculus
Local Linearity and L’Hospital’s Rule

10/12 Question

1. Find the limit, if it exists.
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2. Sketch the graphs of f(x) = x — %, g(x) = cosx, and h(x) = sinx — 1 in the same viewing

b4
window. Zoom in on the graphs at the point (5, 0) and use local linearity to explain how the
graphs relate to the limits found in parts (a) and (b).
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Asx — m/2:

e The slope of the graph of y = sinx — 1 approaches m = 0.

e The slope of the graph of y = cos x approaches m = —1.
e The slope of the graphof y = x — g approaches m = 1.

These observations support the results obtained using L’Hospital’s Rule.
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Note: These two examples of indeterminate forms 0 are actually limits of difference quotients:

f’ (%) where f(x) =sinx and g’ (%) where g(x) = cosx



3. Consider the limit lim (sec? x — tan® x)
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(a) Find the value of the limit by writing sec x and tan x in terms of sin x and cos x, and then
using L"Hospital’s Rule.
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(b) Find the value of the limit by using a trigonometric identity.
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4. Suppose f has a continuous derivative, and the line tangent to the graph of y = f(x) at the
point where x = 5 has the equation y = 3x — 8. Consider the limit
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(b) Find the limit by factoring the difference of squares in the numerator and denominator,
and without using L’Hospital’s Rule.
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Factor: difference of squares

Limit law



5. (Bonus Problems) Find the limit.
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