Monday Night Calculus

Limits at Infinity and Infinite Limits

9/14 Question

The graphs of the functions \(f \) and \(g \) are given in the figures. The dashed lines in the figures represent horizontal or vertical asymptotes. The \(x \)-axis is a horizontal asymptote for both graphs.

![Graph of f(x)](image1)

1. Use the graph of \(f \) to evaluate each limit. If a limit does not exist, explain why.

 (a) \(\lim_{x \to -2^-} f(x) = \infty \)

 (b) \(\lim_{x \to -2^+} f(x) = -\infty \)

 (c) \(\lim_{x \to -2^-} f(x) \) DNE

 (d) \(\lim_{x \to 2^-} f(x) = \infty \)

 (e) \(\lim_{x \to 2^+} f(x) = \infty \)

 (f) \(\lim_{x \to 2^-} f(x) = \infty \)

 (g) \(\lim_{x \to 0} f(x) = 0 \)

 (h) \(\lim_{x \to \infty} f(x) = 0 \)

2. Use the graph of \(g \) to evaluate each limit. If a limit does not exist, explain why.

 (a) \(\lim_{x \to \infty} g(x) = -3 \)

 (b) \(\lim_{x \to \infty} g(x) = 0 \)

 (c) \(\lim_{x \to 0} g(x) = 0 \)

3. Use the graphs of \(f \) and \(g \) to evaluate each limit, if it exists. If the limit does not exist, explain why. Or, explain why neither conclusion is possible.

 (a) \(\lim_{x \to 2^+} \frac{f(x)}{g(x)} = \infty \)

 (b) \(\lim_{x \to 2^-} \frac{g(x)}{f(x)} = 0 \)

 (c) \(\lim_{x \to -2} \frac{g(x)}{f(x)} = 0 \)

 (d) \(\lim_{x \to \infty} [f(x) + g(x)] = 0 \)

 (e) \(\lim_{x \to 0} \frac{f(x)}{g(x)} \) CBD*

 (f) \(\lim_{x \to \infty} [f(x) \cdot g(x)] = 0 \)

CBD: Cannot Be Determined; not enough information is given in order to evaluate this limit.
Bonus Problem

Evaluate \(\lim_{x \to 0} \frac{1}{x} \sin \left(\frac{1}{x} \right) \)

Consider one-sided limits.

\[
\lim_{x \to 0^+} \frac{1}{x} \sin \left(\frac{1}{x} \right) \text{ DNE}
\]

This limit is not in an indeterminate form.

As \(x \to 0^+ \), \(\frac{1}{x} \to \infty \) (increases without bound), and \(\sin \left(\frac{1}{x} \right) \) oscillates between \(-1\) and \(1\) infinitely often.

So, the product is oscillating between positive and negative values, getting larger in absolute value as \(x \to 0^+ \).

Therefore, the limit does not exit.

One can make a similar argument for the limit at \(x \to 0^- \).

So, \(\lim_{x \to 0^-} \frac{1}{x} \sin \left(\frac{1}{x} \right) \text{ DNE} \)

There is no vertical asymptote at \(x = 0 \).