Monday Night Calculus

Limits at Infinity and Infinite Limits

9/14 Question

The graphs of the functions f and g are given in the figures. The dashed lines in the figures represent horizontal or vertical asymptotes. The x-axis is a horizontal asymptote for both graphs.

1. Use the graph of f to evaluate each limit. If a limit does not exist, explain why.
(a) $\lim _{x \rightarrow-2^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$
(c) $\lim _{x \rightarrow-2} f(x) \mathrm{DNE}$
(d) $\lim _{x \rightarrow 2^{-}} f(x)=\infty$
(e) $\lim _{x \rightarrow 2^{+}} f(x)=\infty$
(f) $\lim _{x \rightarrow 2} f(x)=\infty$
(g) $\lim _{x \rightarrow 0} f(x)=0$
(h) $\lim _{x \rightarrow \infty} f(x)=0$
2. Use the graph of g to evaluate each limit. If a limit does not exist, explain why.
(a) $\lim _{x \rightarrow-\infty} g(x)=-3$
(b) $\lim _{x \rightarrow \infty} g(x)=0$
(c) $\lim _{x \rightarrow 0} g(x)=0$
3. Use the graphs of f and g to evaluate each limit, if it exists. If the limit does not exist, explain why. Or, explain why neither conclusion is possible.
(a) $\lim _{x \rightarrow 2^{+}} \frac{f(x)}{g(x)}=\infty$
(b) $\lim _{x \rightarrow 2^{-}} \frac{g(x)}{f(x)}=0$
(c) $\lim _{x \rightarrow-2} \frac{g(x)}{f(x)}=0$
(d) $\lim _{x \rightarrow \infty}[f(x)+g(x)]=0$
(e) $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)} \mathrm{CBD}^{*}$
(f) $\lim _{x \rightarrow \infty}[f(x) \cdot g(x)]=0$

CBD: Cannot Be Determined; not enough information is given in order to evaluate this limit.

Bonus Problem

Evaluate $\lim _{x \rightarrow 0} \frac{1}{x} \sin \left(\frac{1}{x}\right)$
Consider one-sided limits.
$\lim _{x \rightarrow 0^{+}} \frac{1}{x} \sin \left(\frac{1}{x}\right)$ DNE
This limit is not in an indeterminate form.
As $x \rightarrow 0^{+}, \frac{1}{x} \rightarrow \infty$ (increases without bound), and $\sin \left(\frac{1}{x}\right)$ oscillates between -1 and 1 infinitely often.

So, the product is oscillating between positive and negative values, getting larger in absolute value as $x \rightarrow 0^{+}$.

Therefore, the limit does not exit.
One can make a similar argument for the limit at $x \rightarrow 0^{-}$.
So, $\lim _{x \rightarrow 0} \frac{1}{x} \sin \left(\frac{1}{x}\right)$ DNE
There is no vertical asymptote at $x=0$.

