Monday Night Calculus

Limits at Infinity and Infinite Limits

9/14 Question

The graphs of the functions f and g are given in the figures. The dashed lines in the figures represent horizontal or vertical asymptotes. The x-axis is a horizontal asymptote for both graphs.

1. Use the graph of f to evaluate each limit. If a limit does not exist, explain why.

(a)
$$\lim_{x \to 2^{-}} f(x) = \infty$$

(a)
$$\lim_{x \to -2^{-}} f(x) = \infty$$
 (b) $\lim_{x \to -2^{+}} f(x) = -\infty$ (c) $\lim_{x \to -2} f(x)$ DNE
(d) $\lim_{x \to 2^{-}} f(x) = \infty$ (e) $\lim_{x \to 2^{+}} f(x) = \infty$ (f) $\lim_{x \to 2} f(x) = \infty$

(c)
$$\lim_{x \to -2} f(x)$$
 DNE

(d)
$$\lim_{x \to 2^{-}} f(x) = \infty$$

(e)
$$\lim_{x \to a^+} f(x) = \infty$$

(f)
$$\lim_{x \to 2} f(x) = \infty$$

(g)
$$\lim_{x \to 0} f(x) = 0$$

(g)
$$\lim_{x \to 0} f(x) = 0$$
 (h) $\lim_{x \to \infty} f(x) = 0$

2. Use the graph of g to evaluate each limit. If a limit does not exist, explain why.

(a)
$$\lim_{x \to -\infty} g(x) = -3$$
 (b) $\lim_{x \to \infty} g(x) = 0$

(b)
$$\lim_{x \to a} g(x) = 0$$

(c)
$$\lim_{x \to 0} g(x) = 0$$

3. Use the graphs of f and g to evaluate each limit, if it exists. If the limit does not exist, explain why. Or, explain why neither conclusion is possible.

(a)
$$\lim_{x \to 2^+} \frac{f(x)}{g(x)} = \infty$$
 (b) $\lim_{x \to 2^-} \frac{g(x)}{f(x)} = 0$ (c) $\lim_{x \to -2} \frac{g(x)}{f(x)} = 0$

(b)
$$\lim_{x \to 2^{-}} \frac{g(x)}{f(x)} = 0$$

(c)
$$\lim_{x \to -2} \frac{g(x)}{f(x)} = 0$$

(d)
$$\lim_{x \to \infty} [f(x) + g(x)] = 0$$
 (e) $\lim_{x \to 0} \frac{f(x)}{g(x)} \text{CBD}^*$ (f) $\lim_{x \to \infty} [f(x) \cdot g(x)] = 0$

(e)
$$\lim_{x\to 0} \frac{f(x)}{g(x)}$$
 CBD*

$$(\mathbf{f})\lim_{x\to\infty}[f(x)\cdot g(x)] = 0$$

CBD: Cannot Be Determined; not enough information is given in order to evaluate this limit.

Bonus Problem

Evaluate
$$\lim_{x\to 0} \frac{1}{x} \sin\left(\frac{1}{x}\right)$$

Consider one-sided limits.

$$\lim_{x \to 0^+} \frac{1}{x} \sin\left(\frac{1}{x}\right) DNE$$

This limit is not in an indeterminate form.

As $x \to 0^+$, $\frac{1}{x} \to \infty$ (increases without bound), and $\sin\left(\frac{1}{x}\right)$ oscillates between -1 and 1 infinitely often.

So, the product is oscillating between positive and negative values, getting larger in absolute value as $x \to 0^+$.

Therefore, the limit does not exit.

One can make a similar argument for the limit at $x \to 0^-$.

So,
$$\lim_{x\to 0} \frac{1}{x} \sin\left(\frac{1}{x}\right)$$
 DNE

There is no vertical asymptote at x = 0.