1. Consider the curve described by $2 y^{3}+y^{2}-y^{5}=x^{4}-2 x^{3}+x^{2}$. (Grace Jang)
(a) Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& 6 y^{2} y^{\prime}+2 y y^{\prime}-5 y^{4} y^{\prime}=4 x^{3}-6 x^{2}+2 x \\
& y^{\prime}\left(6 y^{2}+2 y-5 y^{4}\right)=4 x^{3}-6 x^{2}+2 x \\
& y^{\prime}=\frac{4 x^{3}-6 x^{2}+2 x}{6 y^{2}+2 y-5 y^{4}}
\end{aligned}
$$

(b) Find the points on the curve at which the tangent line is vertical.

$$
\begin{aligned}
& -5 y^{4}+6 y^{2}+2 y=0 \Rightarrow y\left(-5 y^{3}+6 y+2\right)=0 \\
& y=0,-0.856,-0.379,1.235 \\
& y=0 \Rightarrow x=0,1 \Rightarrow 4 \cdot 0^{3}-6 \cdot 0^{2}+2 \cdot 0=0,4 \cdot 1^{3}-6 \cdot 1^{2}+2 \cdot 1=0 ? ? \\
& y=-0.856 \Rightarrow x=\text { complex } \\
& y=-0.379 \Rightarrow x=-0.176,0.291,0.709,1.176 \\
& y=1.235 \Rightarrow x=-0.844,1.844
\end{aligned}
$$

2. The rate at which rainwater flows into a drainpipe is modeled by the function R where $R(t)=20 \sin \left(\frac{t^{2}}{35}\right)$ cubic feet per hour, t is measured in hours and $0 \leq t \leq 8$. The pipe is partially blocked, allowing water to drain out of the other end of the pipe at a rate modeled by $D(t)=-0.04 t^{3}+0.4 t^{2}+0.96 t$ cubic feet per hour, for $0 \leq t \leq 8$. There are 30 cubic feet of water in the pipe at time $t=0$. Determine whether each statement is True or False.
(Patty Odette Jacobs)
(a) The amount of water in the pipe is increasing at $t=3$.
$R(3)-D(3)=-0.314<0 \Rightarrow$ water in the pipe is decreasing at time $t=3$ hours.
(b) The rate at which water is draining from the pipe at $t=1$ is 1.64 cubic feet per hour.
$D(1)=1.32$
(c) The rate at which water is draining from the pipe at $t=1$ is 1.32 cubic feet per hour.
$D(1)=1.32$
(d) The rate at which water is draining from the pipe at $t=1$ is increasing at a rate of 1.64 cubic feet per hour per hour.
$D^{\prime}(1)=1.64$
(e) The volume of water in the pipe at $t=4$ is decreasing at a rate of 1.148 cubic feet per hour.
$R(4)-D(4)=1.148$
(f) The volume of water in the pipe has zero rate of change for some time t on $[2,5]$.

$R(t)-D(t)=0 \Rightarrow t=3.272$ hours
(g) The rate at which rainwater flows into the pipe and the rate at which the rainwater flows out of the pipe is the same at time $t=0$.
$R(0)=D(0)=0$
(h) At time $t=2$ more water is draining from the pipe than is flowing into the pipe.
$R(2)-D(2)=-0.919<0:$ more water draining from the pipe.
(i) The rate of change of volume in the tank is given by $30+R(t)-D(t)$.

The rate of change should not include the constant term 30 .
(j) Find the maximum amount of water in the pipe over the time interval $[0,8]$.

$$
\begin{aligned}
& V(t)=30+\int_{0}^{t}(R(x)-D(x)) d x \\
& V^{\prime}(t)=R(t)-D(t)=0 \Rightarrow t=0,3.272
\end{aligned}
$$

t	$V(t)$
0	30
3.272	27.967
8	48.544

3. Let g be the function given by $g(x)=\sqrt{1-\sin ^{2} x}$. Which of the following statements could be false on the interval $0 \leq x \leq \pi$?
(A) By the Extreme Value Theorem, there is a value c such that $g(c) \leq g(x)$ for $0 \leq x \leq \pi$.
(B) By the Extreme Value Theorem, there is a value c such that $g(c) \geq g(x)$ for $0 \leq x \leq \pi$.
(C) By the Intermediate Value Theorem, there is a value c such that $g(c)=\frac{g(0)+g(\pi)}{2}$.
(D) By the Mean Value Theorem, there is a value c such that $g^{\prime}(c)=\frac{g(\pi)-g(0)}{\pi-0}$.

Extreme Value Theorem (EVT)

If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

The Intermediate Value Theorem (IVT)

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. There there exists a number c in (a, b) such that $f(c)=N$.

The Mean Value Theorem (MVT)

Let f be a function that satisfies the following hypotheses:
(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or equivalently, $f(b)-f(a)=f^{\prime}(c)(b-a)$
$g(x)=\sqrt{1-\sin ^{2} x}=\sqrt{\cos ^{2} x}=|\cos x|$

Domain: $(-\infty, \infty) \quad g$ is continuous on its domain.
$g^{\prime}(x)=\frac{1}{2}\left(1-\sin ^{2} x\right)^{-1 / 2} \cdot-2 \sin x \cos x=-\frac{\sin x \cos x}{\sqrt{1-\sin ^{2} x}}$

g is not differentiable at $x=\frac{\pi}{2} \pm n \pi$
4. Let g be a twice differentiable function with $g^{\prime}(x)>0$ and $g^{\prime \prime}(x)<0$ for all real numbers x, such that $g(4)=12$ and $g(5)=18$. Of the following, which is a possible value for $g(6)$?
(Judy Mitchell Barnette)
(A) 15
(B) 18
(C) 21
(D) 24

$$
\text { 5. } \int_{1}^{9} t\left(3 t^{2}-1\right)^{5} d t
$$

$$
\begin{array}{rlrl}
u & =3 t^{2}-1 & t & =1: u=3 \cdot 1^{2}-1=2 \\
d u & =6 t d t & t & =9: u=3 \cdot 9^{2}-1=242 \\
d t & =\frac{d u}{6 t} & & \\
\int_{1}^{9} t\left(3 t^{2}-1\right)^{5} d t & =\int_{2}^{242} t(u)^{5} \frac{d u}{6 t} & & \\
& =\frac{1}{6} \int_{2}^{242} u^{5} d u & \text { Change variables. } \\
& =\frac{1}{6}\left[\frac{u^{6}}{6}\right]_{2}^{242} & \text { Antiderivative. } \\
& =\frac{1}{36}\left(242^{6}-2^{6}\right)=5579428225280 &
\end{array}
$$

6. $\int_{-\infty}^{0} 6 e^{2 x} d x$

$$
\begin{aligned}
\int_{-\infty}^{0} 6 e^{2 x} d x & =\lim _{t \rightarrow-\infty} \int_{t}^{0} 6 e^{2 x} d x \\
& =\lim _{t \rightarrow-\infty}\left[\frac{6}{2} e^{2 x}\right]_{t}^{0} \\
& =\lim _{t \rightarrow-\infty} 3\left[e^{0}-e^{t}\right] \\
& =3 \lim _{t \rightarrow-\infty}(1-0)=3
\end{aligned}
$$

Improper Integral.

Antiderivative.

FTC.

Evaluate the limit.
7. The graph of the function f is shown in the figure.

The function h is defined by $h(x)=\int_{-1}^{x} f(t) d t$ for $-6 \leq x \leq 3$.
(a) Find the values at which h has a relative extreme value.
(b) Find the values at which h has an absolute extreme value.
(c) Find the values at which the graph of h has an inflection point.
(d) Find the intervals on which h is increasing.

Solution

(a) $h^{\prime}(x)=f(x)$
$h^{\prime}(x)=f(x)=0: x=-3,-1$
$g^{\prime}(x)=f(x)$ DNE : none
h has a relative maximum at $x=-3$ because $h^{\prime}(x)$ changes from positive to negative there.
h has a relative minimum at $x=-1$ because $h^{\prime}(x)$ changes from negative to positive there.

(b) | x | $h(x)$ |
| :---: | :---: |
| -6 | -3 |

$-3 \quad 3$
$-1 \quad 0$

3	6

(c) $h^{\prime \prime}(x)=f^{\prime}(x)$
h has an inflection point at $x=-2$ because $h^{\prime}=f$ changes from decreasing to increasing there.
(d) h increasing: $[-6,-3],[-1,3]$

