1. $\int_{-1}^{1} \frac{1}{x} d x$
(Sarah Strick)

Definition: Improper Integral of Type 2
(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists as a finite number.
(b) If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists as a finite number.
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$ and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

$\int_{-1}^{1} \frac{1}{x} d x=\int_{-1}^{0} \frac{1}{x} d x+\int_{0}^{1} \frac{1}{x} d x$

$$
\begin{array}{rlrl}
\int_{0}^{1} \frac{1}{x} d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x} d x & \text { Improper integral definition } \\
& =\lim _{t \rightarrow 0^{+}}[\ln |x|]_{t}^{1} & \text { Antiderivative } \\
& =\lim _{t \rightarrow 0^{+}}[\ln 1-\ln t] & \text { FTC } \tag{FTC}\\
& =\lim _{t \rightarrow 0^{+}}(-\ln t)=\infty & \text { Evaluate limit } \\
\int_{0}^{1} \frac{1}{x} d x \text { diverges } \Rightarrow \int_{-1}^{1} \frac{1}{x} d x \text { diverges. } &
\end{array}
$$

2. Intervals on which a function is increasing or decreasing, concave up, or concave down: endpoints.
(Dorothy Buddy Rich)

Definition

A function f is increasing on an interval I if for any values x_{1} and x_{2} in I, with $x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$.
A function f is decreasing on an interval I if for any values x_{1} and x_{2} in I, with $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.

Note: This definition is in terms of an interval, not a value.

Increasing/Decreasing Test

(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Example Increasing/Decreasing

Find where the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is increasing and where it is decreasing.

Solution
$f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x=12 x(x-2)(x+1)$

Candidates for extrema:
$f^{\prime}(x)=0: \quad x=-1,0,2$
$f^{\prime}(x)$ DNE: none

f increasing: $[-1,0],[2, \infty)$
f decreasing: $(-\infty,-1],[0,2]$

Exam Scoring
Endpoints do not matter, unless:
The function is undefined.
Closed at infinity: $(10, \infty]$

Definition

Let f be a differentiable function.
f is concave up at a if the graph of f is above the tangent line to f at a for all x in a neighborhood of a (but not equal to a).
f is concave down at a if the graph of f is below the tangent line to f at a for all x in a neighborhood of a (but not equal to a).

Note: This definition is in terms of a specific value, not an interval.

Concave Up

Concave Down

No Concavity

Example Concavity and Points of Inflection

Discuss the curve $y=x^{4}-4 x^{3}$ with respect to concavity and points of inflection.

Solution

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=12 x^{2}-24 x=12 x(x-2)
\end{aligned}
$$

Candidates for points of inflection:
$f^{\prime \prime}(x)=0: \quad x=0,2$
$f^{\prime \prime}(x)$ DNE: none

Concave up: $(-\infty, 0),(2, \infty)$

Concave down: $(0,2)$

Inflection Points:
$(0, f(0))=(0,0) ;$
$(2, f(2))=(2,-16)$

Scoring Conclusion

1. Inclusion or exclusion of endpoints do not matter unless there is a contradiction.
2. A sign chart is not sufficient justification.
3. Written justification (confirmation of a sign chart) is necessary in order to receive credit.

Definition: Inflection Point

A point P on the graph of f is called an inflection point (IP) if f is continuous there and the graph changes from concave up to concave down or from concave down to concave up at P.

A Closer Look

1. If $f^{\prime \prime}(a)$ exists and $f^{\prime \prime}(a) \neq 0$: concavity is known, graph cannot change concavity at ($a, f(a)$).
$f^{\prime \prime}(x)$ can change sign only when $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ DNE.
2. Concavity Test: IP only where second derivative changes sign.

Use a sign chart for the second derivative.

Procedure for Determining Inflection Points

1. Find the IP candidates:

Those x in the domain of f such that $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ DNE.
2. Screen the IP candidates:

Check for a change in sign of $f^{\prime \prime}$ at each candidate.
If a change in sign occurs, then $(x, f(x))$ is a point of inflection.
If no change in sign, then $(x, f(x))$ is not a point of inflection.
3. The differentiable functions p and q are defined for all real numbers x. Values of p, p^{\prime}, q, and q^{\prime} for various values of x are given in the table.

x	$p(x)$	$p^{\prime}(x)$	$q(x)$	$q^{\prime}(x)$
4	10	8	4	2
5	4	9	16	7

(a) If $f(x)=p(\sqrt{q(x)})$, find $f^{\prime}(5)$.
(b) If $h(x)=\frac{q(x)}{x}$, find $h^{\prime}(4)$.

Solution

(a) $f(x)=p(\sqrt{q(x)}) \Rightarrow f^{\prime}(x)=p^{\prime}(\sqrt{q(x)}) \cdot \frac{1}{2} q(x)^{-1 / 2} \cdot q^{\prime}(x)$

$$
\begin{aligned}
f^{\prime}(5) & =p^{\prime}(\sqrt{q(5)}) \cdot \frac{1}{2} q(5)^{-1 / 2} \cdot q^{\prime}(5) \\
& =p^{\prime}(\sqrt{16}) \cdot \frac{1}{2 \sqrt{16}} \cdot 7 \\
& =p^{\prime}(4) \cdot \frac{1}{8} \cdot 7=8 \cdot \frac{1}{8} \cdot 7=7
\end{aligned}
$$

(b) $h(x)=\frac{q(x)}{x} \Rightarrow h^{\prime}(x)=\frac{x q^{\prime}(x)-q(x) \cdot 1}{x^{2}}$

$$
\begin{aligned}
h^{\prime}(4) & =\frac{4 \cdot q^{\prime}(4)-q(4)}{4^{2}} \\
& =\frac{4 \cdot 2-4}{16}=\frac{4}{16}=\frac{1}{4}
\end{aligned}
$$

4. The graphs of the functions f and g are shown in the figure.

Let $u(x)=f(g(x)), v(x)=g(f(x))$, and $w(x)=g(g(x))$. Find each derivative if it exists.
(a) $u^{\prime}(1)$
(b) $v^{\prime}(1)$
(c) $w^{\prime}(1)$

Solution
(a) $u^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
\begin{aligned}
u^{\prime}(1) & =f^{\prime}(g(1)) \cdot g^{\prime}(1)=f^{\prime}(3) \cdot(-3) \\
& =-\frac{1}{4} \cdot(-3)=\frac{3}{4}
\end{aligned}
$$

(b) $v^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
v^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(2) \cdot 2
$$ $g^{\prime}(2)$ does not exist.

$v^{\prime}(1)$ does not exist. Can you show this analytically?
(c) $w^{\prime}(x)=g^{\prime}(g(x)) \cdot g^{\prime}(x)$

$$
\begin{aligned}
w^{\prime}(1) & =g^{\prime}(g(1)) \cdot g^{\prime}(1)=g^{\prime}(3) \cdot(-3) \\
& =\frac{2}{3} \cdot(-3)=-2
\end{aligned}
$$

